基于MnFe2O4@ZnO的磁性光催化剂纳米复合材料降解偶氮染料。

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-04-26 eCollection Date: 2025-05-06 DOI:10.1021/acsomega.4c11468
Javier Alonso Lopez Medina, David Domínguez, Pedro Pizá, Guoduan Liu, Camilo Velez, Faustino Reyes Gómez, Mario Humberto Farías, Uriel Caudillo-Flores, Gerardo Soto Herrera, Hugo Tiznado, Jorge Ricardo Mejía-Salazar
{"title":"基于MnFe2O4@ZnO的磁性光催化剂纳米复合材料降解偶氮染料。","authors":"Javier Alonso Lopez Medina, David Domínguez, Pedro Pizá, Guoduan Liu, Camilo Velez, Faustino Reyes Gómez, Mario Humberto Farías, Uriel Caudillo-Flores, Gerardo Soto Herrera, Hugo Tiznado, Jorge Ricardo Mejía-Salazar","doi":"10.1021/acsomega.4c11468","DOIUrl":null,"url":null,"abstract":"<p><p>This work focuses on fabricating a photocatalyst nanocomposite based on MnFe<sub>2</sub>O<sub>4</sub>@ZnO for degrading Red Amaranth azo dye. Manganese ferrite (MnFe<sub>2</sub>O<sub>4</sub>) magnetic nanoparticles were synthesized via a hydrothermal method, while a ZnO thin film, acting as the photoactive layer, was deposited on the magnetic cores using the atomic layer deposition (ALD) technique. X-ray diffraction (XRD) confirmed the spinel ferrite structure of MnFe<sub>2</sub>O<sub>4</sub> and the hexagonal wurtzite phase of ZnO. The crystallite size, determined from the (311) peak, was 36.5 nm; this value was consistent with the average size of 33.2 nm measured by transmission electron microscopy (TEM). Magnetic characterization via vibrating sample magnetometry (VSM) at room temperature revealed a superparamagnetic behavior, determined by a very small hysteresis loop. The ZnO coating, achieved with 200 ALD cycles, resulted in a degradation efficiency η<sub>eff</sub> of approximately 60% for the Red Amaranth dye. Finite-difference time-domain (FDTD) simulations provided theoretical insights into the electromagnetic interactions driving the photodegradation process, supporting the UV-vis absorbance data of the AZO dye. This nanocomposite can be considered as a soft magnetic material that offers promising applications in nanotechnology for environmentally friendly wastewater treatment and remediation.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 17","pages":"17595-17610"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12059902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic Photocatalyst Nanocomposite Based on MnFe<sub>2</sub>O<sub>4</sub>@ZnO for AZO Dye Degradation.\",\"authors\":\"Javier Alonso Lopez Medina, David Domínguez, Pedro Pizá, Guoduan Liu, Camilo Velez, Faustino Reyes Gómez, Mario Humberto Farías, Uriel Caudillo-Flores, Gerardo Soto Herrera, Hugo Tiznado, Jorge Ricardo Mejía-Salazar\",\"doi\":\"10.1021/acsomega.4c11468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work focuses on fabricating a photocatalyst nanocomposite based on MnFe<sub>2</sub>O<sub>4</sub>@ZnO for degrading Red Amaranth azo dye. Manganese ferrite (MnFe<sub>2</sub>O<sub>4</sub>) magnetic nanoparticles were synthesized via a hydrothermal method, while a ZnO thin film, acting as the photoactive layer, was deposited on the magnetic cores using the atomic layer deposition (ALD) technique. X-ray diffraction (XRD) confirmed the spinel ferrite structure of MnFe<sub>2</sub>O<sub>4</sub> and the hexagonal wurtzite phase of ZnO. The crystallite size, determined from the (311) peak, was 36.5 nm; this value was consistent with the average size of 33.2 nm measured by transmission electron microscopy (TEM). Magnetic characterization via vibrating sample magnetometry (VSM) at room temperature revealed a superparamagnetic behavior, determined by a very small hysteresis loop. The ZnO coating, achieved with 200 ALD cycles, resulted in a degradation efficiency η<sub>eff</sub> of approximately 60% for the Red Amaranth dye. Finite-difference time-domain (FDTD) simulations provided theoretical insights into the electromagnetic interactions driving the photodegradation process, supporting the UV-vis absorbance data of the AZO dye. This nanocomposite can be considered as a soft magnetic material that offers promising applications in nanotechnology for environmentally friendly wastewater treatment and remediation.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 17\",\"pages\":\"17595-17610\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12059902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c11468\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/6 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c11468","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于MnFe2O4@ZnO的光催化剂纳米复合材料,用于降解红苋菜偶氮染料。采用水热法合成了锰铁氧体(MnFe2O4)磁性纳米颗粒,并采用原子层沉积(ALD)技术在磁芯上沉积了ZnO薄膜作为光活性层。x射线衍射(XRD)证实了MnFe2O4的尖晶石铁素体结构和ZnO的六方纤锌矿相。(311)峰测得晶粒尺寸为36.5 nm;该值与透射电子显微镜(TEM)测得的平均尺寸33.2 nm一致。在室温下,通过振动样品磁强计(VSM)进行的磁性表征显示出由非常小的磁滞回线决定的超顺磁性行为。通过200次ALD循环获得的氧化锌涂层对红苋菜染料的降解效率约为60%。时域有限差分(FDTD)模拟为驱动光降解过程的电磁相互作用提供了理论见解,支持了偶氮染料的紫外-可见吸收数据。这种纳米复合材料可以被认为是一种软磁材料,在环境友好型废水处理和修复的纳米技术中具有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic Photocatalyst Nanocomposite Based on MnFe2O4@ZnO for AZO Dye Degradation.

This work focuses on fabricating a photocatalyst nanocomposite based on MnFe2O4@ZnO for degrading Red Amaranth azo dye. Manganese ferrite (MnFe2O4) magnetic nanoparticles were synthesized via a hydrothermal method, while a ZnO thin film, acting as the photoactive layer, was deposited on the magnetic cores using the atomic layer deposition (ALD) technique. X-ray diffraction (XRD) confirmed the spinel ferrite structure of MnFe2O4 and the hexagonal wurtzite phase of ZnO. The crystallite size, determined from the (311) peak, was 36.5 nm; this value was consistent with the average size of 33.2 nm measured by transmission electron microscopy (TEM). Magnetic characterization via vibrating sample magnetometry (VSM) at room temperature revealed a superparamagnetic behavior, determined by a very small hysteresis loop. The ZnO coating, achieved with 200 ALD cycles, resulted in a degradation efficiency ηeff of approximately 60% for the Red Amaranth dye. Finite-difference time-domain (FDTD) simulations provided theoretical insights into the electromagnetic interactions driving the photodegradation process, supporting the UV-vis absorbance data of the AZO dye. This nanocomposite can be considered as a soft magnetic material that offers promising applications in nanotechnology for environmentally friendly wastewater treatment and remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信