{"title":"图感知的AURALSTM:基于BiLSTM的专注统一表示体系结构,用于增强分子性质预测。","authors":"Muhammed Ali Pala","doi":"10.1007/s11030-025-11197-4","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting molecular properties with high accuracy is essential across scientific fields, from drug discovery and biotechnology to materials science and environmental research. In biomedical sciences, accurate molecular property prediction is crucial for elucidating disease mechanisms, identifying potential drug candidates, and optimising various processes. However, existing approaches, often based on low-dimensional representations, fail to capture the intricate spatial and structural complexities of molecular data. This study introduces a novel hybrid deep learning model, the Graph-Aware AURA-LSTM (Attentive Unified Representation Architecture-Long Short-Term Memory), designed to determine molecular properties with unprecedented accuracy using advanced graphical representations. AURA-LSTM combines multiple Graph Neural Network (GNN) architectures, specifically Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and Graph Isomorphism Networks (GINs), in a parallel structure to comprehensively capture the multidimensional structural features of molecules. Within this architecture, GCNs incorporate local structural relationships, GATs apply attention mechanisms to highlight critical structural elements, and GINs capture intricate molecular details through isomorphic distinction, resulting in a richly detailed feature matrix. The feature layer then processes this BiLSTM matrix, which evaluates temporal relationships to enhance molecular feature classification. Evaluated on eight benchmark datasets, AURA-LSTM demonstrated superior performance, consistently achieving over 90% accuracy and outperforming state-of-the-art methods. These results position AURA-LSTM as a robust tool for molecular feature classification, uniquely capable of integrating temporally aware insights from distinct GNN architectures.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-Aware AURALSTM: An Attentive Unified Representation Architecture with BiLSTM for Enhanced Molecular Property Prediction.\",\"authors\":\"Muhammed Ali Pala\",\"doi\":\"10.1007/s11030-025-11197-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting molecular properties with high accuracy is essential across scientific fields, from drug discovery and biotechnology to materials science and environmental research. In biomedical sciences, accurate molecular property prediction is crucial for elucidating disease mechanisms, identifying potential drug candidates, and optimising various processes. However, existing approaches, often based on low-dimensional representations, fail to capture the intricate spatial and structural complexities of molecular data. This study introduces a novel hybrid deep learning model, the Graph-Aware AURA-LSTM (Attentive Unified Representation Architecture-Long Short-Term Memory), designed to determine molecular properties with unprecedented accuracy using advanced graphical representations. AURA-LSTM combines multiple Graph Neural Network (GNN) architectures, specifically Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and Graph Isomorphism Networks (GINs), in a parallel structure to comprehensively capture the multidimensional structural features of molecules. Within this architecture, GCNs incorporate local structural relationships, GATs apply attention mechanisms to highlight critical structural elements, and GINs capture intricate molecular details through isomorphic distinction, resulting in a richly detailed feature matrix. The feature layer then processes this BiLSTM matrix, which evaluates temporal relationships to enhance molecular feature classification. Evaluated on eight benchmark datasets, AURA-LSTM demonstrated superior performance, consistently achieving over 90% accuracy and outperforming state-of-the-art methods. These results position AURA-LSTM as a robust tool for molecular feature classification, uniquely capable of integrating temporally aware insights from distinct GNN architectures.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11197-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11197-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Graph-Aware AURALSTM: An Attentive Unified Representation Architecture with BiLSTM for Enhanced Molecular Property Prediction.
Predicting molecular properties with high accuracy is essential across scientific fields, from drug discovery and biotechnology to materials science and environmental research. In biomedical sciences, accurate molecular property prediction is crucial for elucidating disease mechanisms, identifying potential drug candidates, and optimising various processes. However, existing approaches, often based on low-dimensional representations, fail to capture the intricate spatial and structural complexities of molecular data. This study introduces a novel hybrid deep learning model, the Graph-Aware AURA-LSTM (Attentive Unified Representation Architecture-Long Short-Term Memory), designed to determine molecular properties with unprecedented accuracy using advanced graphical representations. AURA-LSTM combines multiple Graph Neural Network (GNN) architectures, specifically Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and Graph Isomorphism Networks (GINs), in a parallel structure to comprehensively capture the multidimensional structural features of molecules. Within this architecture, GCNs incorporate local structural relationships, GATs apply attention mechanisms to highlight critical structural elements, and GINs capture intricate molecular details through isomorphic distinction, resulting in a richly detailed feature matrix. The feature layer then processes this BiLSTM matrix, which evaluates temporal relationships to enhance molecular feature classification. Evaluated on eight benchmark datasets, AURA-LSTM demonstrated superior performance, consistently achieving over 90% accuracy and outperforming state-of-the-art methods. These results position AURA-LSTM as a robust tool for molecular feature classification, uniquely capable of integrating temporally aware insights from distinct GNN architectures.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;