肼辅助水电解系统:性能提升与应用拓展。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao-Yu Wang, Zhong-Yong Yuan
{"title":"肼辅助水电解系统:性能提升与应用拓展。","authors":"Hao-Yu Wang, Zhong-Yong Yuan","doi":"10.1039/d5mh00118h","DOIUrl":null,"url":null,"abstract":"<p><p>Powered by renewable energy sources, water electrolysis has emerged as a highly promising technology for energy conversion, attracting significant attention in recent years, but it faces severe challenges, especially at the anode. Accordingly, hydrazine-assisted water electrolysis, incorporating the electro-oxidation of hydrazine at the anode, holds great promise for greatly reducing the input voltage and optimizing the system by application expansion. In this review, we present an in-depth overview of hydrazine-assisted water electrolysis, introducing its reaction mechanisms, basic parameters, specific advantages compared with conventional water electrolysis and other hybrid water electrolysis systems, strategies for developing efficient electrocatalysts with enhanced electrocatalytic performances, and especially its potential application expansion. An analysis of its technical and economic aspects, feasibility studies, mechanistic investigations, and relevant comparisons are also presented for providing a deeper insight into hydrazine-assisted water electrolysis. Finally, the potential avenues and opportunities for future research on hydrazine-assisted water electrolysis are discussed.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrazine-assisted water electrolysis system: performance enhancement and application expansion.\",\"authors\":\"Hao-Yu Wang, Zhong-Yong Yuan\",\"doi\":\"10.1039/d5mh00118h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Powered by renewable energy sources, water electrolysis has emerged as a highly promising technology for energy conversion, attracting significant attention in recent years, but it faces severe challenges, especially at the anode. Accordingly, hydrazine-assisted water electrolysis, incorporating the electro-oxidation of hydrazine at the anode, holds great promise for greatly reducing the input voltage and optimizing the system by application expansion. In this review, we present an in-depth overview of hydrazine-assisted water electrolysis, introducing its reaction mechanisms, basic parameters, specific advantages compared with conventional water electrolysis and other hybrid water electrolysis systems, strategies for developing efficient electrocatalysts with enhanced electrocatalytic performances, and especially its potential application expansion. An analysis of its technical and economic aspects, feasibility studies, mechanistic investigations, and relevant comparisons are also presented for providing a deeper insight into hydrazine-assisted water electrolysis. Finally, the potential avenues and opportunities for future research on hydrazine-assisted water electrolysis are discussed.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00118h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00118h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由可再生能源提供动力的水电解作为一种非常有前途的能量转换技术近年来引起了人们的广泛关注,但它面临着严峻的挑战,特别是在阳极方面。因此,在阳极加入联氨电氧化的联氨辅助水电解有望大大降低输入电压,并通过应用扩展优化系统。本文综述了肼辅助水电解的反应机理、基本参数、与传统水电解和其他混合水电解系统相比的优势、开发高效电催化剂的策略以及其潜在的应用前景。对其技术和经济方面的分析、可行性研究、机理调查和相关比较也被提出,以提供对肼辅助水电解的更深入的了解。最后,对肼辅助电解水的研究前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrazine-assisted water electrolysis system: performance enhancement and application expansion.

Powered by renewable energy sources, water electrolysis has emerged as a highly promising technology for energy conversion, attracting significant attention in recent years, but it faces severe challenges, especially at the anode. Accordingly, hydrazine-assisted water electrolysis, incorporating the electro-oxidation of hydrazine at the anode, holds great promise for greatly reducing the input voltage and optimizing the system by application expansion. In this review, we present an in-depth overview of hydrazine-assisted water electrolysis, introducing its reaction mechanisms, basic parameters, specific advantages compared with conventional water electrolysis and other hybrid water electrolysis systems, strategies for developing efficient electrocatalysts with enhanced electrocatalytic performances, and especially its potential application expansion. An analysis of its technical and economic aspects, feasibility studies, mechanistic investigations, and relevant comparisons are also presented for providing a deeper insight into hydrazine-assisted water electrolysis. Finally, the potential avenues and opportunities for future research on hydrazine-assisted water electrolysis are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信