预测慢性乙型病毒性肝炎患者肝细胞癌发展的机器学习模型。

IF 0.4 4区 医学 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
Asian Biomedicine Pub Date : 2025-02-28 eCollection Date: 2025-02-01 DOI:10.2478/abm-2025-0007
Warissara Kuaaroon, Thodsawit Tiyarattanachai, Terapap Apiparakoon, Sanparith Marukatat, Natthaporn Tanpowpong, Sombat Treeprasertsuk, Rungsun Rerknimitr, Pisit Tangkijvanich, Prooksa Ananchuensook, Watcharasak Chotiyaputta, Kittichai Samaithongcharoen, Roongruedee Chaiteerakij
{"title":"预测慢性乙型病毒性肝炎患者肝细胞癌发展的机器学习模型。","authors":"Warissara Kuaaroon, Thodsawit Tiyarattanachai, Terapap Apiparakoon, Sanparith Marukatat, Natthaporn Tanpowpong, Sombat Treeprasertsuk, Rungsun Rerknimitr, Pisit Tangkijvanich, Prooksa Ananchuensook, Watcharasak Chotiyaputta, Kittichai Samaithongcharoen, Roongruedee Chaiteerakij","doi":"10.2478/abm-2025-0007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic hepatitis B (CHB) infection is the major risk factor for hepatocellular carcinoma (HCC).</p><p><strong>Objective: </strong>To develop machine-learning models for predicting an individual risk of HCC development in CHB-infected patients.</p><p><strong>Methods: </strong>Machine learning models were constructed using features from follow-up visits of CHB patients to predict the diagnosis of HCC development within 6 months after each index follow-up. We developed 4 model variants using all features, with alpha fetoprotein (AFP) (<i>AF <sup>A</sup></i> ) and without AFP (<i>AF<sup>N</sup></i> ); and selected features, with AFP (<i>SF <sup>A</sup></i> ) and without AFP (<i>SF<sup>N</sup></i> ). Performance was evaluated using 10-fold cross-validation on a derivation cohort and further validated on an independent cohort.</p><p><strong>Results: </strong>In the derivation cohort of 2,382 patients, of whom 117 developed HCC, <i>AF<sup>A</sup></i> achieved higher sensitivity (0.634, 95% confidence interval [CI]: 0.559-0.708) and specificity (0.836; 0.830-0.842) than <i>AF <sup>N</sup></i> (sensitivity 0.553; 0.476-0.630 and specificity 0.786; 0.779-0.792). <i>SF<sup>A</sup></i> also achieved higher sensitivity (0.683; 0.611-0.755 vs. 0.658; 0.585-0.732) and specificity (0.756; 0.749-0.763 vs. 0.744; 0.737-0.751) than <i>SF<sup>N</sup></i> . Performance of <i>SF<sup>A</sup></i> and <i>SF<sup>N</sup></i> were tested in another cohort of 162 patients in which 57 patients developed HCC. <i>SF<sup>A</sup></i> achieved sensitivity and specificity of 0.634 (0.522-0.746) and 0.657 (0.615-0.699), while sensitivity and specificity of <i>SF<sup>N</sup></i> were 0.690 (0.583-0.798) and 0.651 (0.609-0.693), respectively.</p><p><strong>Conclusion: </strong>The machine learning models demonstrate good performance for predicting short-term risk for HCC development and may potentially be used for tailoring surveillance interval for CHB patients.</p>","PeriodicalId":8501,"journal":{"name":"Asian Biomedicine","volume":"19 1","pages":"51-59"},"PeriodicalIF":0.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994220/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning models for predicting hepatocellular carcinoma development in patients with chronic viral hepatitis B infection.\",\"authors\":\"Warissara Kuaaroon, Thodsawit Tiyarattanachai, Terapap Apiparakoon, Sanparith Marukatat, Natthaporn Tanpowpong, Sombat Treeprasertsuk, Rungsun Rerknimitr, Pisit Tangkijvanich, Prooksa Ananchuensook, Watcharasak Chotiyaputta, Kittichai Samaithongcharoen, Roongruedee Chaiteerakij\",\"doi\":\"10.2478/abm-2025-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic hepatitis B (CHB) infection is the major risk factor for hepatocellular carcinoma (HCC).</p><p><strong>Objective: </strong>To develop machine-learning models for predicting an individual risk of HCC development in CHB-infected patients.</p><p><strong>Methods: </strong>Machine learning models were constructed using features from follow-up visits of CHB patients to predict the diagnosis of HCC development within 6 months after each index follow-up. We developed 4 model variants using all features, with alpha fetoprotein (AFP) (<i>AF <sup>A</sup></i> ) and without AFP (<i>AF<sup>N</sup></i> ); and selected features, with AFP (<i>SF <sup>A</sup></i> ) and without AFP (<i>SF<sup>N</sup></i> ). Performance was evaluated using 10-fold cross-validation on a derivation cohort and further validated on an independent cohort.</p><p><strong>Results: </strong>In the derivation cohort of 2,382 patients, of whom 117 developed HCC, <i>AF<sup>A</sup></i> achieved higher sensitivity (0.634, 95% confidence interval [CI]: 0.559-0.708) and specificity (0.836; 0.830-0.842) than <i>AF <sup>N</sup></i> (sensitivity 0.553; 0.476-0.630 and specificity 0.786; 0.779-0.792). <i>SF<sup>A</sup></i> also achieved higher sensitivity (0.683; 0.611-0.755 vs. 0.658; 0.585-0.732) and specificity (0.756; 0.749-0.763 vs. 0.744; 0.737-0.751) than <i>SF<sup>N</sup></i> . Performance of <i>SF<sup>A</sup></i> and <i>SF<sup>N</sup></i> were tested in another cohort of 162 patients in which 57 patients developed HCC. <i>SF<sup>A</sup></i> achieved sensitivity and specificity of 0.634 (0.522-0.746) and 0.657 (0.615-0.699), while sensitivity and specificity of <i>SF<sup>N</sup></i> were 0.690 (0.583-0.798) and 0.651 (0.609-0.693), respectively.</p><p><strong>Conclusion: </strong>The machine learning models demonstrate good performance for predicting short-term risk for HCC development and may potentially be used for tailoring surveillance interval for CHB patients.</p>\",\"PeriodicalId\":8501,\"journal\":{\"name\":\"Asian Biomedicine\",\"volume\":\"19 1\",\"pages\":\"51-59\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/abm-2025-0007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/abm-2025-0007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:慢性乙型肝炎(CHB)感染是肝细胞癌(HCC)的主要危险因素。目的:建立预测chb感染患者发生HCC的个体风险的机器学习模型。方法:利用CHB患者随访特征构建机器学习模型,预测每次指标随访后6个月内HCC发展的诊断。我们开发了4种具有所有特征的模型变体,有甲胎蛋白(AFP) (AF A)和没有甲胎蛋白(AFN);和选定的特征,有AFP (SF A)和没有AFP (SFN)。在衍生队列中使用10倍交叉验证来评估性能,并在独立队列中进一步验证。结果:在2382例衍生队列中,其中117例发展为HCC, AFA具有更高的敏感性(0.634,95%可信区间[CI]: 0.559-0.708)和特异性(0.836;0.830-0.842)高于AF N(敏感性0.553;0.476 ~ 0.630,特异性0.786;0.779 - -0.792)。SFA也具有较高的灵敏度(0.683;0.611-0.755 vs. 0.658;0.585-0.732)和特异性(0.756;0.749-0.763 vs. 0.744;0.737-0.751)大于SFN。在另一组162例患者中测试了SFA和SFN的性能,其中57例患者发生HCC。SFA的敏感性和特异性分别为0.634(0.522-0.746)和0.657 (0.615-0.699),SFN的敏感性和特异性分别为0.690(0.583-0.798)和0.651(0.609-0.693)。结论:机器学习模型在预测HCC发展的短期风险方面表现良好,并可能用于定制CHB患者的监测间隔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning models for predicting hepatocellular carcinoma development in patients with chronic viral hepatitis B infection.

Background: Chronic hepatitis B (CHB) infection is the major risk factor for hepatocellular carcinoma (HCC).

Objective: To develop machine-learning models for predicting an individual risk of HCC development in CHB-infected patients.

Methods: Machine learning models were constructed using features from follow-up visits of CHB patients to predict the diagnosis of HCC development within 6 months after each index follow-up. We developed 4 model variants using all features, with alpha fetoprotein (AFP) (AF A ) and without AFP (AFN ); and selected features, with AFP (SF A ) and without AFP (SFN ). Performance was evaluated using 10-fold cross-validation on a derivation cohort and further validated on an independent cohort.

Results: In the derivation cohort of 2,382 patients, of whom 117 developed HCC, AFA achieved higher sensitivity (0.634, 95% confidence interval [CI]: 0.559-0.708) and specificity (0.836; 0.830-0.842) than AF N (sensitivity 0.553; 0.476-0.630 and specificity 0.786; 0.779-0.792). SFA also achieved higher sensitivity (0.683; 0.611-0.755 vs. 0.658; 0.585-0.732) and specificity (0.756; 0.749-0.763 vs. 0.744; 0.737-0.751) than SFN . Performance of SFA and SFN were tested in another cohort of 162 patients in which 57 patients developed HCC. SFA achieved sensitivity and specificity of 0.634 (0.522-0.746) and 0.657 (0.615-0.699), while sensitivity and specificity of SFN were 0.690 (0.583-0.798) and 0.651 (0.609-0.693), respectively.

Conclusion: The machine learning models demonstrate good performance for predicting short-term risk for HCC development and may potentially be used for tailoring surveillance interval for CHB patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Biomedicine
Asian Biomedicine 医学-医学:研究与实验
CiteScore
1.20
自引率
0.00%
发文量
24
审稿时长
6-12 weeks
期刊介绍: Asian Biomedicine: Research, Reviews and News (ISSN 1905-7415 print; 1875-855X online) is published in one volume (of 6 bimonthly issues) a year since 2007. [...]Asian Biomedicine is an international, general medical and biomedical journal that aims to publish original peer-reviewed contributions dealing with various topics in the biomedical and health sciences from basic experimental to clinical aspects. The work and authorship must be strongly affiliated with a country in Asia, or with specific importance and relevance to the Asian region. The Journal will publish reviews, original experimental studies, observational studies, technical and clinical (case) reports, practice guidelines, historical perspectives of Asian biomedicine, clinicopathological conferences, and commentaries Asian biomedicine is intended for a broad and international audience, primarily those in the health professions including researchers, physician practitioners, basic medical scientists, dentists, educators, administrators, those in the assistive professions, such as nurses, and the many types of allied health professionals in research and health care delivery systems including those in training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信