Jamile Maria Pereira Bastos Lira de Vasconcelos, Robson Coelho de Araújo Neri, Amanda Vieira de Barros, Carlos Eduardo Sales da Silva, Maria Cecília Ferreira Galindo, Bruno Oliveira de Veras, Ranilson Souza Bezerra, Maria Betânia Melo de Oliveira
{"title":"山羊皮(Capra aegagruss Erxleben, 1777):一种有前途和可持续的胶原蛋白来源。","authors":"Jamile Maria Pereira Bastos Lira de Vasconcelos, Robson Coelho de Araújo Neri, Amanda Vieira de Barros, Carlos Eduardo Sales da Silva, Maria Cecília Ferreira Galindo, Bruno Oliveira de Veras, Ranilson Souza Bezerra, Maria Betânia Melo de Oliveira","doi":"10.1007/s12010-025-05242-z","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the study was to extract and characterize collagen from solid untanned skin waste from the processing of leather in a Capra aegagrus tannery. Using pepsin (SPC), 37 g of collagen were obtained from 100 g of dry weight skin. Characterization took place using SDS-PAGE, FTIR and UV absorption techniques, identifying it as type I collagen. The ultraviolet (UV) absorption spectrum showed a peak at 238 nm. In the thermogram, the maximum transition temperature was 56º C. Using the electrophoresis technique, it was observed that SPC consists of band patterns formed by a γ chain, a β chain and two distinct α chains (α1 and α2). In the FTIR analysis, the collagen showed the absorption peaks for the amides, showing that the SPC extraction process maintained the integrity of the molecule. To observe the effect of NaCl concentration on the solubility of SPC, the collagen showed high solubility, up to a concentration of 2% NaCl. The solubility peak was observed at pH 4.0, with a sharp drop until pH 7.0, reaching its minimum point at pH 10. Scanning microscopy showed some irregular surfaces, cavities and fibrous structures, which may favor the application of collagen as a biomaterial. The zeta potential found the isoelectric point of collagen at pH = 6.61. These results indicate that the collagen obtained has a high level of structural integrity and can be applied as an alternative source, as well as adding value to a waste product that is often discarded in the environment.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Goat Skin (Capra aegagruss Erxleben, 1777): a Promising and Sustainable Source of Collagen.\",\"authors\":\"Jamile Maria Pereira Bastos Lira de Vasconcelos, Robson Coelho de Araújo Neri, Amanda Vieira de Barros, Carlos Eduardo Sales da Silva, Maria Cecília Ferreira Galindo, Bruno Oliveira de Veras, Ranilson Souza Bezerra, Maria Betânia Melo de Oliveira\",\"doi\":\"10.1007/s12010-025-05242-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of the study was to extract and characterize collagen from solid untanned skin waste from the processing of leather in a Capra aegagrus tannery. Using pepsin (SPC), 37 g of collagen were obtained from 100 g of dry weight skin. Characterization took place using SDS-PAGE, FTIR and UV absorption techniques, identifying it as type I collagen. The ultraviolet (UV) absorption spectrum showed a peak at 238 nm. In the thermogram, the maximum transition temperature was 56º C. Using the electrophoresis technique, it was observed that SPC consists of band patterns formed by a γ chain, a β chain and two distinct α chains (α1 and α2). In the FTIR analysis, the collagen showed the absorption peaks for the amides, showing that the SPC extraction process maintained the integrity of the molecule. To observe the effect of NaCl concentration on the solubility of SPC, the collagen showed high solubility, up to a concentration of 2% NaCl. The solubility peak was observed at pH 4.0, with a sharp drop until pH 7.0, reaching its minimum point at pH 10. Scanning microscopy showed some irregular surfaces, cavities and fibrous structures, which may favor the application of collagen as a biomaterial. The zeta potential found the isoelectric point of collagen at pH = 6.61. These results indicate that the collagen obtained has a high level of structural integrity and can be applied as an alternative source, as well as adding value to a waste product that is often discarded in the environment.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05242-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05242-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Goat Skin (Capra aegagruss Erxleben, 1777): a Promising and Sustainable Source of Collagen.
The aim of the study was to extract and characterize collagen from solid untanned skin waste from the processing of leather in a Capra aegagrus tannery. Using pepsin (SPC), 37 g of collagen were obtained from 100 g of dry weight skin. Characterization took place using SDS-PAGE, FTIR and UV absorption techniques, identifying it as type I collagen. The ultraviolet (UV) absorption spectrum showed a peak at 238 nm. In the thermogram, the maximum transition temperature was 56º C. Using the electrophoresis technique, it was observed that SPC consists of band patterns formed by a γ chain, a β chain and two distinct α chains (α1 and α2). In the FTIR analysis, the collagen showed the absorption peaks for the amides, showing that the SPC extraction process maintained the integrity of the molecule. To observe the effect of NaCl concentration on the solubility of SPC, the collagen showed high solubility, up to a concentration of 2% NaCl. The solubility peak was observed at pH 4.0, with a sharp drop until pH 7.0, reaching its minimum point at pH 10. Scanning microscopy showed some irregular surfaces, cavities and fibrous structures, which may favor the application of collagen as a biomaterial. The zeta potential found the isoelectric point of collagen at pH = 6.61. These results indicate that the collagen obtained has a high level of structural integrity and can be applied as an alternative source, as well as adding value to a waste product that is often discarded in the environment.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.