半聚脲在水溶液中聚集成低聚胶束和短纤维。

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ian W Hamley, Lucas R de Mello, Valeria Castelletto, Thomas Zinn, Nathan Cowieson, Jani Seitsonen, Thomas Bizien
{"title":"半聚脲在水溶液中聚集成低聚胶束和短纤维。","authors":"Ian W Hamley, Lucas R de Mello, Valeria Castelletto, Thomas Zinn, Nathan Cowieson, Jani Seitsonen, Thomas Bizien","doi":"10.1021/acs.biomac.5c00342","DOIUrl":null,"url":null,"abstract":"<p><p>Semaglutide is a lipopeptide with important applications in the treatment of diabetes, obesity, and other conditions. This class of drug (glucagon-like peptide-1 agonists and other lipidated peptides) may be susceptible to aggregation due to the tendency of lipopeptides to self-assemble into various nanostructures. Here, we show using cryogenic-TEM, small-angle X-ray scattering, and molecular dynamics simulations that semaglutide in aqueous solution undergoes slow aggregation into spherical micelles in water at sufficiently high concentration. A small population of needle-shaped fibril aggregates is also observed. At a lower concentration, dimer and trimer structures are formed. The micelles, once formed, are stable toward further aging. The aggregation influences the effect of semaglutide on the permeability of an epithelial gut model membrane of Caco-2 cells. These findings are expected to be important in understanding the long-term stability of semaglutide solutions and the potential effects of aggregation on therapeutic efficacy.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semaglutide Aggregates into Oligomeric Micelles and Short Fibrils in Aqueous Solution.\",\"authors\":\"Ian W Hamley, Lucas R de Mello, Valeria Castelletto, Thomas Zinn, Nathan Cowieson, Jani Seitsonen, Thomas Bizien\",\"doi\":\"10.1021/acs.biomac.5c00342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Semaglutide is a lipopeptide with important applications in the treatment of diabetes, obesity, and other conditions. This class of drug (glucagon-like peptide-1 agonists and other lipidated peptides) may be susceptible to aggregation due to the tendency of lipopeptides to self-assemble into various nanostructures. Here, we show using cryogenic-TEM, small-angle X-ray scattering, and molecular dynamics simulations that semaglutide in aqueous solution undergoes slow aggregation into spherical micelles in water at sufficiently high concentration. A small population of needle-shaped fibril aggregates is also observed. At a lower concentration, dimer and trimer structures are formed. The micelles, once formed, are stable toward further aging. The aggregation influences the effect of semaglutide on the permeability of an epithelial gut model membrane of Caco-2 cells. These findings are expected to be important in understanding the long-term stability of semaglutide solutions and the potential effects of aggregation on therapeutic efficacy.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.5c00342\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00342","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Semaglutide是一种脂肽,在治疗糖尿病、肥胖和其他疾病方面具有重要应用。这类药物(胰高血糖素样肽-1激动剂和其他脂化肽)可能容易聚集,因为脂肽倾向于自组装成各种纳米结构。在这里,我们使用低温透射电镜、小角度x射线散射和分子动力学模拟表明,水溶液中的半聚脲在足够高浓度的水中缓慢聚集成球形胶束。还观察到一小群针状的原纤维聚集体。在较低浓度下,形成二聚体和三聚体结构。胶束一旦形成,在进一步老化时是稳定的。这种聚集影响了半聚脲对Caco-2细胞上皮肠模型膜通透性的影响。这些发现对于理解西马鲁肽溶液的长期稳定性和聚集对治疗效果的潜在影响具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semaglutide Aggregates into Oligomeric Micelles and Short Fibrils in Aqueous Solution.

Semaglutide is a lipopeptide with important applications in the treatment of diabetes, obesity, and other conditions. This class of drug (glucagon-like peptide-1 agonists and other lipidated peptides) may be susceptible to aggregation due to the tendency of lipopeptides to self-assemble into various nanostructures. Here, we show using cryogenic-TEM, small-angle X-ray scattering, and molecular dynamics simulations that semaglutide in aqueous solution undergoes slow aggregation into spherical micelles in water at sufficiently high concentration. A small population of needle-shaped fibril aggregates is also observed. At a lower concentration, dimer and trimer structures are formed. The micelles, once formed, are stable toward further aging. The aggregation influences the effect of semaglutide on the permeability of an epithelial gut model membrane of Caco-2 cells. These findings are expected to be important in understanding the long-term stability of semaglutide solutions and the potential effects of aggregation on therapeutic efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信