甲烷Ta+顺序活化的机理基础:氧化加成、开环σ-键复分解和C-C键形成。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-05-15 Epub Date: 2025-05-06 DOI:10.1021/acs.jpca.5c01569
Tucker W R Lewis, Albert A Viggiano, Brendan C Sweeny, Jennifer Meyer, Shaun G Ard, Nicholas S Shuman
{"title":"甲烷Ta+顺序活化的机理基础:氧化加成、开环σ-键复分解和C-C键形成。","authors":"Tucker W R Lewis, Albert A Viggiano, Brendan C Sweeny, Jennifer Meyer, Shaun G Ard, Nicholas S Shuman","doi":"10.1021/acs.jpca.5c01569","DOIUrl":null,"url":null,"abstract":"<p><p>The kinetics of Ta<sup>+</sup> + CH<sub>4</sub> and related reactions TaC<i><sub>n</sub></i>H<i><sub>m</sub></i><sup>+</sup> + CH<sub>4</sub> (<i>n</i> = 2-4, <i>m</i> = <i>n</i>, 2<i>n</i>, 3<i>n</i>) are measured from 300-600 K using a selected-ion flow tube apparatus. Complicated kinetics are analyzed through a novel bootstrapping methodology, and rate constants for 38 unimolecular, bimolecular, and ternary processes are reported at each of the four temperatures. As has been well-established, Ta<sup>+</sup> efficiently dehydrogenates methane through a non-spin-conserved process. Sequential chemistry leads to the dehydrogenation of up to four methane molecules per tantalum center through the competing processes of TaC<i><sub>n</sub></i>H<i><sub>m</sub></i><sup>+</sup> + CH<sub>4</sub> → TaC<sub><i>n</i>+1</sub>H<sub><i>m</i>+2</sub><sup>+</sup> + H<sub>2</sub> (dehydrogenation) and TaC<sub><i>n</i>+1</sub>H<sub><i>m</i>+4</sub><sup>+</sup> (association). Supported by density functional theory calculations, the distinct mechanisms and product structures of the sequential reactions are derived. The activation energy for oxidative insertion of Ta into a C-H bond is well-predicted by a simple heuristic: whether or not the reactant tantalum atom possesses unbound valence electrons of opposite spin. TaCH<sub>2</sub><sup>+</sup> is predicted to have a small activation energy for oxidative insertion but can only proceed to dehydrogenation of methane via carbon-carbon bond formation, enabled by three separate intersystem crossing events. The product is determined to be the tantalapropene dihydride cation, not the more intuitive tantalapropane cation, via comparison of measured and calculated thermal dissociation rates. The TaC<sub>2</sub>H<sub>4</sub><sup>+</sup> tantalapropene dihydride has a prohibitive barrier to oxidative insertion. It proceeds instead through a ring-opening insertion of the entire tantalapropene moiety into a C-H bond via σ-bond metathesis; the unbroken metallacycle bond acts as a tether, preventing the activated products from separating and allowing for further isomerization, leading to dehydrogenation. This and subsequent dehydrogenation processes occur without carbon-carbon bond formation; no evidence of a tantalabutane or larger metallacycle is found.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"4217-4233"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Foundations of the Sequential Activation of Methane by Ta<sup>+</sup>: Oxidative Addition, Ring-Opening σ-Bond Metathesis, and C-C Bond Formation.\",\"authors\":\"Tucker W R Lewis, Albert A Viggiano, Brendan C Sweeny, Jennifer Meyer, Shaun G Ard, Nicholas S Shuman\",\"doi\":\"10.1021/acs.jpca.5c01569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kinetics of Ta<sup>+</sup> + CH<sub>4</sub> and related reactions TaC<i><sub>n</sub></i>H<i><sub>m</sub></i><sup>+</sup> + CH<sub>4</sub> (<i>n</i> = 2-4, <i>m</i> = <i>n</i>, 2<i>n</i>, 3<i>n</i>) are measured from 300-600 K using a selected-ion flow tube apparatus. Complicated kinetics are analyzed through a novel bootstrapping methodology, and rate constants for 38 unimolecular, bimolecular, and ternary processes are reported at each of the four temperatures. As has been well-established, Ta<sup>+</sup> efficiently dehydrogenates methane through a non-spin-conserved process. Sequential chemistry leads to the dehydrogenation of up to four methane molecules per tantalum center through the competing processes of TaC<i><sub>n</sub></i>H<i><sub>m</sub></i><sup>+</sup> + CH<sub>4</sub> → TaC<sub><i>n</i>+1</sub>H<sub><i>m</i>+2</sub><sup>+</sup> + H<sub>2</sub> (dehydrogenation) and TaC<sub><i>n</i>+1</sub>H<sub><i>m</i>+4</sub><sup>+</sup> (association). Supported by density functional theory calculations, the distinct mechanisms and product structures of the sequential reactions are derived. The activation energy for oxidative insertion of Ta into a C-H bond is well-predicted by a simple heuristic: whether or not the reactant tantalum atom possesses unbound valence electrons of opposite spin. TaCH<sub>2</sub><sup>+</sup> is predicted to have a small activation energy for oxidative insertion but can only proceed to dehydrogenation of methane via carbon-carbon bond formation, enabled by three separate intersystem crossing events. The product is determined to be the tantalapropene dihydride cation, not the more intuitive tantalapropane cation, via comparison of measured and calculated thermal dissociation rates. The TaC<sub>2</sub>H<sub>4</sub><sup>+</sup> tantalapropene dihydride has a prohibitive barrier to oxidative insertion. It proceeds instead through a ring-opening insertion of the entire tantalapropene moiety into a C-H bond via σ-bond metathesis; the unbroken metallacycle bond acts as a tether, preventing the activated products from separating and allowing for further isomerization, leading to dehydrogenation. This and subsequent dehydrogenation processes occur without carbon-carbon bond formation; no evidence of a tantalabutane or larger metallacycle is found.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"4217-4233\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.5c01569\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c01569","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用选择离子流管装置,在300-600 K范围内测量了Ta+ + CH4及其相关反应TaCnHm+ + CH4 (n = 2-4, m = n, 2n, 3n)的动力学。通过一种新颖的自举方法分析了复杂的动力学,并报告了38个单分子、双分子和三元过程在四种温度下的速率常数。正如已经确定的那样,Ta+通过非自旋守恒过程有效地脱氢甲烷。顺序化学通过TaCnHm+ + CH4→TaCn+1Hm+2+ + H2(脱氢)和TaCn+1Hm+4+(缔合)的竞争过程,导致每个钽中心有多达4个甲烷分子脱氢。在密度泛函理论计算的支持下,推导出序列反应的不同机理和产物结构。通过一个简单的启发式方法可以很好地预测Ta氧化插入C-H键的活化能:反应物钽原子是否具有相反自旋的未束缚价电子。据预测,TaCH2+具有较小的氧化插入活化能,但只能通过形成碳-碳键来进行甲烷脱氢,这需要三个独立的系统间交叉事件。通过测量和计算的热解离速率的比较,确定产物是钽丙烯二氢化阳离子,而不是更直观的钽丙烯阳离子。TaC2H4+钽丙烯二氢化物具有禁止氧化插入的屏障。它通过开环插入整个钽-丙烯片段,通过σ-键复分解形成一个C-H键;不间断的金属环键起着绳索的作用,防止活性产物分离,并允许进一步的异构化,导致脱氢。这个过程和随后的脱氢过程在没有碳-碳键形成的情况下发生;没有发现钽丁烷或更大金属环的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic Foundations of the Sequential Activation of Methane by Ta+: Oxidative Addition, Ring-Opening σ-Bond Metathesis, and C-C Bond Formation.

The kinetics of Ta+ + CH4 and related reactions TaCnHm+ + CH4 (n = 2-4, m = n, 2n, 3n) are measured from 300-600 K using a selected-ion flow tube apparatus. Complicated kinetics are analyzed through a novel bootstrapping methodology, and rate constants for 38 unimolecular, bimolecular, and ternary processes are reported at each of the four temperatures. As has been well-established, Ta+ efficiently dehydrogenates methane through a non-spin-conserved process. Sequential chemistry leads to the dehydrogenation of up to four methane molecules per tantalum center through the competing processes of TaCnHm+ + CH4 → TaCn+1Hm+2+ + H2 (dehydrogenation) and TaCn+1Hm+4+ (association). Supported by density functional theory calculations, the distinct mechanisms and product structures of the sequential reactions are derived. The activation energy for oxidative insertion of Ta into a C-H bond is well-predicted by a simple heuristic: whether or not the reactant tantalum atom possesses unbound valence electrons of opposite spin. TaCH2+ is predicted to have a small activation energy for oxidative insertion but can only proceed to dehydrogenation of methane via carbon-carbon bond formation, enabled by three separate intersystem crossing events. The product is determined to be the tantalapropene dihydride cation, not the more intuitive tantalapropane cation, via comparison of measured and calculated thermal dissociation rates. The TaC2H4+ tantalapropene dihydride has a prohibitive barrier to oxidative insertion. It proceeds instead through a ring-opening insertion of the entire tantalapropene moiety into a C-H bond via σ-bond metathesis; the unbroken metallacycle bond acts as a tether, preventing the activated products from separating and allowing for further isomerization, leading to dehydrogenation. This and subsequent dehydrogenation processes occur without carbon-carbon bond formation; no evidence of a tantalabutane or larger metallacycle is found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信