Jacob M Clary, Olivia A Hull, Daniel Weinberg, Ravishankar Sundararaman, Mauro Del Ben, Derek Vigil-Fowler
{"title":"随机相近似相关能的静态子空间近似:在催化和电化学材料中的应用。","authors":"Jacob M Clary, Olivia A Hull, Daniel Weinberg, Ravishankar Sundararaman, Mauro Del Ben, Derek Vigil-Fowler","doi":"10.1021/acs.jctc.4c01276","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling complex materials using high-fidelity, ab initio methods at low cost is a fundamental goal for quantum chemical software packages. The GW approximation and random phase approximation (RPA) provide a unified description of both electronic structure and total energies using the same physics in a many-body perturbative approach that can be more accurate than generalized-gradient density functional theory (DFT) methods. However, GW/RPA implementations have historically been limited to either specific materials classes or application toward small chemical systems. The static subspace approximation allows for reduced cost full-frequency GW/RPA calculations and has previously been benchmarked thoroughly for GW calculations. Here, we describe our approach to including partial occupations of electronic orbitals in full-frequency GW and RPA calculations for the study of electrocatalysts. We benchmarked RPA total energy calculations using the subspace approximation across a diverse test suite of materials for a variety of computational parameters. The benchmarking quantifies the impact of different extrapolation procedures for representing the static polarizability at infinite screened cutoff, and shows that using screened cutoffs above 20-25 Ryd result in diminishing accuracy returns for predicting RPA total energies. Additionally, for moderately sized electrocatalytic models, 2-3 times fewer computational resources are used to compute RPA total energies by representing the static polarizability with 20-30% of the static subspace basis, with an error of approximately 0.01 eV or better in RPA adsorption energy calculations. Finally, we show that for these electrochemical models RPA can shift DFT adsorption energy shifts by up to 0.5 eV and that GW can frequently shift DFT eigenvalues of surface and adsorbate states by approximately 0.5-1 eV.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 9","pages":"4718-4729"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static Subspace Approximation for Random Phase Approximation Correlation Energies: Applications to Materials for Catalysis and Electrochemistry.\",\"authors\":\"Jacob M Clary, Olivia A Hull, Daniel Weinberg, Ravishankar Sundararaman, Mauro Del Ben, Derek Vigil-Fowler\",\"doi\":\"10.1021/acs.jctc.4c01276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modeling complex materials using high-fidelity, ab initio methods at low cost is a fundamental goal for quantum chemical software packages. The GW approximation and random phase approximation (RPA) provide a unified description of both electronic structure and total energies using the same physics in a many-body perturbative approach that can be more accurate than generalized-gradient density functional theory (DFT) methods. However, GW/RPA implementations have historically been limited to either specific materials classes or application toward small chemical systems. The static subspace approximation allows for reduced cost full-frequency GW/RPA calculations and has previously been benchmarked thoroughly for GW calculations. Here, we describe our approach to including partial occupations of electronic orbitals in full-frequency GW and RPA calculations for the study of electrocatalysts. We benchmarked RPA total energy calculations using the subspace approximation across a diverse test suite of materials for a variety of computational parameters. The benchmarking quantifies the impact of different extrapolation procedures for representing the static polarizability at infinite screened cutoff, and shows that using screened cutoffs above 20-25 Ryd result in diminishing accuracy returns for predicting RPA total energies. Additionally, for moderately sized electrocatalytic models, 2-3 times fewer computational resources are used to compute RPA total energies by representing the static polarizability with 20-30% of the static subspace basis, with an error of approximately 0.01 eV or better in RPA adsorption energy calculations. Finally, we show that for these electrochemical models RPA can shift DFT adsorption energy shifts by up to 0.5 eV and that GW can frequently shift DFT eigenvalues of surface and adsorbate states by approximately 0.5-1 eV.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"21 9\",\"pages\":\"4718-4729\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01276\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01276","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Static Subspace Approximation for Random Phase Approximation Correlation Energies: Applications to Materials for Catalysis and Electrochemistry.
Modeling complex materials using high-fidelity, ab initio methods at low cost is a fundamental goal for quantum chemical software packages. The GW approximation and random phase approximation (RPA) provide a unified description of both electronic structure and total energies using the same physics in a many-body perturbative approach that can be more accurate than generalized-gradient density functional theory (DFT) methods. However, GW/RPA implementations have historically been limited to either specific materials classes or application toward small chemical systems. The static subspace approximation allows for reduced cost full-frequency GW/RPA calculations and has previously been benchmarked thoroughly for GW calculations. Here, we describe our approach to including partial occupations of electronic orbitals in full-frequency GW and RPA calculations for the study of electrocatalysts. We benchmarked RPA total energy calculations using the subspace approximation across a diverse test suite of materials for a variety of computational parameters. The benchmarking quantifies the impact of different extrapolation procedures for representing the static polarizability at infinite screened cutoff, and shows that using screened cutoffs above 20-25 Ryd result in diminishing accuracy returns for predicting RPA total energies. Additionally, for moderately sized electrocatalytic models, 2-3 times fewer computational resources are used to compute RPA total energies by representing the static polarizability with 20-30% of the static subspace basis, with an error of approximately 0.01 eV or better in RPA adsorption energy calculations. Finally, we show that for these electrochemical models RPA can shift DFT adsorption energy shifts by up to 0.5 eV and that GW can frequently shift DFT eigenvalues of surface and adsorbate states by approximately 0.5-1 eV.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.