对抗癌症免疫治疗耐药性:纳米医学的视角。

IF 20.1 1区 医学 Q1 ONCOLOGY
Xiangyi Kong, Xintong Xie, Juan Wu, Xiangyu Wang, Wenxiang Zhang, Shuowen Wang, Daria Valerievna Abbasova, Yi Fang, Hongnan Jiang, Jidong Gao, Jing Wang
{"title":"对抗癌症免疫治疗耐药性:纳米医学的视角。","authors":"Xiangyi Kong, Xintong Xie, Juan Wu, Xiangyu Wang, Wenxiang Zhang, Shuowen Wang, Daria Valerievna Abbasova, Yi Fang, Hongnan Jiang, Jidong Gao, Jing Wang","doi":"10.1002/cac2.70025","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer immunotherapy offers renewed hope for treating this disease. However, cancer cells possess inherent mechanisms that enable them to circumvent each stage of the immune cycle, thereby evading anti-cancer immunity and leading to resistance. Various functionalized nanoparticles (NPs), modified with cationic lipids, pH-sensitive compounds, or photosensitizers, exhibit unique physicochemical properties that facilitate the targeted delivery of therapeutic agents to cancer cells or the tumor microenvironment (TME). These NPs are engineered to modify immune activity. The crucial signal transduction pathways and mechanisms by which functionalized NPs counteract immunotherapy resistance are outlined, including enhancing antigen presentation, boosting the activation and infiltration of tumor-specific immune cells, inducing immunogenic cell death, and counteracting immunosuppressive conditions in the TME. Additionally, this review summarizes current clinical trials involving NP-based immunotherapy. Ultimately, it highlights the potential of nanotechnology to advance cancer immunotherapy.</p>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":" ","pages":""},"PeriodicalIF":20.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combating cancer immunotherapy resistance: a nano-medicine perspective.\",\"authors\":\"Xiangyi Kong, Xintong Xie, Juan Wu, Xiangyu Wang, Wenxiang Zhang, Shuowen Wang, Daria Valerievna Abbasova, Yi Fang, Hongnan Jiang, Jidong Gao, Jing Wang\",\"doi\":\"10.1002/cac2.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer immunotherapy offers renewed hope for treating this disease. However, cancer cells possess inherent mechanisms that enable them to circumvent each stage of the immune cycle, thereby evading anti-cancer immunity and leading to resistance. Various functionalized nanoparticles (NPs), modified with cationic lipids, pH-sensitive compounds, or photosensitizers, exhibit unique physicochemical properties that facilitate the targeted delivery of therapeutic agents to cancer cells or the tumor microenvironment (TME). These NPs are engineered to modify immune activity. The crucial signal transduction pathways and mechanisms by which functionalized NPs counteract immunotherapy resistance are outlined, including enhancing antigen presentation, boosting the activation and infiltration of tumor-specific immune cells, inducing immunogenic cell death, and counteracting immunosuppressive conditions in the TME. Additionally, this review summarizes current clinical trials involving NP-based immunotherapy. Ultimately, it highlights the potential of nanotechnology to advance cancer immunotherapy.</p>\",\"PeriodicalId\":9495,\"journal\":{\"name\":\"Cancer Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":20.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cac2.70025\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cac2.70025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症免疫疗法为治疗这种疾病带来了新的希望。然而,癌细胞具有固有的机制,使它们能够绕过免疫周期的每个阶段,从而逃避抗癌免疫并导致耐药性。各种功能化纳米粒子(NPs),用阳离子脂质、ph敏感化合物或光敏剂修饰,表现出独特的物理化学性质,促进治疗剂靶向递送到癌细胞或肿瘤微环境(TME)。这些NPs被设计用来改变免疫活性。本文概述了功能化NPs对抗免疫治疗耐药性的关键信号转导途径和机制,包括增强抗原呈递,促进肿瘤特异性免疫细胞的激活和浸润,诱导免疫原性细胞死亡,以及对抗TME中的免疫抑制条件。此外,本综述总结了目前涉及np免疫治疗的临床试验。最后,它强调了纳米技术在推进癌症免疫治疗方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combating cancer immunotherapy resistance: a nano-medicine perspective.

Cancer immunotherapy offers renewed hope for treating this disease. However, cancer cells possess inherent mechanisms that enable them to circumvent each stage of the immune cycle, thereby evading anti-cancer immunity and leading to resistance. Various functionalized nanoparticles (NPs), modified with cationic lipids, pH-sensitive compounds, or photosensitizers, exhibit unique physicochemical properties that facilitate the targeted delivery of therapeutic agents to cancer cells or the tumor microenvironment (TME). These NPs are engineered to modify immune activity. The crucial signal transduction pathways and mechanisms by which functionalized NPs counteract immunotherapy resistance are outlined, including enhancing antigen presentation, boosting the activation and infiltration of tumor-specific immune cells, inducing immunogenic cell death, and counteracting immunosuppressive conditions in the TME. Additionally, this review summarizes current clinical trials involving NP-based immunotherapy. Ultimately, it highlights the potential of nanotechnology to advance cancer immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Communications
Cancer Communications Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
25.50
自引率
4.30%
发文量
153
审稿时长
4 weeks
期刊介绍: Cancer Communications is an open access, peer-reviewed online journal that encompasses basic, clinical, and translational cancer research. The journal welcomes submissions concerning clinical trials, epidemiology, molecular and cellular biology, and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信