TREM2通过调节小胶质溶酶体膜渗透介导的自噬阻碍脊髓损伤后的恢复。

IF 5.9 1区 生物学 Q2 CELL BIOLOGY
Tianlun Zhao, Jiawei Di, Yu Kang, Haojie Zhang, Senyu Yao, Bin Liu, Limin Rong
{"title":"TREM2通过调节小胶质溶酶体膜渗透介导的自噬阻碍脊髓损伤后的恢复。","authors":"Tianlun Zhao, Jiawei Di, Yu Kang, Haojie Zhang, Senyu Yao, Bin Liu, Limin Rong","doi":"10.1111/cpr.70047","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia, considered as the main immune responder, play an important role in regulating neuroinflammation in central nervous system (CNS) disorders. Our previous work found that TREM2 is highly expressed in microglia and is related to their functional state. However, the specific role of TREM2 in spinal cord injury has not yet been explored. To further investigate the potential mechanism of TREM2, we performed single-cell sequencing on wild-type (Wt) and Trem2<sup>-/-</sup> mice before and after spinal cord injury. Compared to Wt mice, the lysosome, autophagy and membrane-related pathways are more strongly activated in Trem2<sup>-/-</sup> mice, suggesting that TREM2 may exert its effects by influencing lysosomal membranes and autophagy. Mechanistically, we demonstrated that the knockout of Trem2 can reduce the nuclear translocation of TFEB by decreasing the phosphorylation of Syk. Furthermore, we validated that in vitro and in vivo silencing Trem2 can promote autophagy by repairing lysosomal membrane permeabilization. Through immunofluorescence, 3D gait analysis, motor evoked potential experiments, H&E staining and Masson staining, we demonstrated that the increased level of autophagy can rescue more microglia in vivo and promote both functional and histological recovery of spinal cord injury. Collectively, these results not only suggest that microglial lysosomal autophagy is regulated in a TREM2-dependent LMP manner, but also, more importantly, they provide a promising clinical translation strategy based on gene therapy for lysosome-related central nervous system disorders.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70047"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TREM2 Impedes Recovery After Spinal Cord Injury by Regulating Microglial Lysosomal Membrane Permeabilization-Mediated Autophagy.\",\"authors\":\"Tianlun Zhao, Jiawei Di, Yu Kang, Haojie Zhang, Senyu Yao, Bin Liu, Limin Rong\",\"doi\":\"10.1111/cpr.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microglia, considered as the main immune responder, play an important role in regulating neuroinflammation in central nervous system (CNS) disorders. Our previous work found that TREM2 is highly expressed in microglia and is related to their functional state. However, the specific role of TREM2 in spinal cord injury has not yet been explored. To further investigate the potential mechanism of TREM2, we performed single-cell sequencing on wild-type (Wt) and Trem2<sup>-/-</sup> mice before and after spinal cord injury. Compared to Wt mice, the lysosome, autophagy and membrane-related pathways are more strongly activated in Trem2<sup>-/-</sup> mice, suggesting that TREM2 may exert its effects by influencing lysosomal membranes and autophagy. Mechanistically, we demonstrated that the knockout of Trem2 can reduce the nuclear translocation of TFEB by decreasing the phosphorylation of Syk. Furthermore, we validated that in vitro and in vivo silencing Trem2 can promote autophagy by repairing lysosomal membrane permeabilization. Through immunofluorescence, 3D gait analysis, motor evoked potential experiments, H&E staining and Masson staining, we demonstrated that the increased level of autophagy can rescue more microglia in vivo and promote both functional and histological recovery of spinal cord injury. Collectively, these results not only suggest that microglial lysosomal autophagy is regulated in a TREM2-dependent LMP manner, but also, more importantly, they provide a promising clinical translation strategy based on gene therapy for lysosome-related central nervous system disorders.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70047\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70047\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70047","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小胶质细胞被认为是主要的免疫应答者,在中枢神经系统(CNS)疾病的神经炎症调节中起重要作用。我们前期的工作发现TREM2在小胶质细胞中高度表达,并与小胶质细胞的功能状态有关。然而,TREM2在脊髓损伤中的具体作用尚未探讨。为了进一步研究TREM2的潜在机制,我们对野生型(Wt)和TREM2 -/-小鼠在脊髓损伤前后进行了单细胞测序。与Wt小鼠相比,Trem2-/-小鼠的溶酶体、自噬和膜相关途径的激活更为强烈,表明Trem2可能通过影响溶酶体膜和自噬来发挥作用。在机制上,我们证明敲除Trem2可以通过降低Syk的磷酸化来减少TFEB的核易位。此外,我们验证了体外和体内沉默Trem2可以通过修复溶酶体膜通透性来促进自噬。通过免疫荧光、3D步态分析、运动诱发电位实验、H&E染色和Masson染色,我们证实自噬水平的提高可以在体内挽救更多的小胶质细胞,促进脊髓损伤的功能和组织学恢复。总之,这些结果不仅表明小胶质溶酶体自噬以trem2依赖性LMP方式调节,更重要的是,它们为溶酶体相关中枢神经系统疾病的基因治疗提供了一种有希望的临床翻译策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TREM2 Impedes Recovery After Spinal Cord Injury by Regulating Microglial Lysosomal Membrane Permeabilization-Mediated Autophagy.

Microglia, considered as the main immune responder, play an important role in regulating neuroinflammation in central nervous system (CNS) disorders. Our previous work found that TREM2 is highly expressed in microglia and is related to their functional state. However, the specific role of TREM2 in spinal cord injury has not yet been explored. To further investigate the potential mechanism of TREM2, we performed single-cell sequencing on wild-type (Wt) and Trem2-/- mice before and after spinal cord injury. Compared to Wt mice, the lysosome, autophagy and membrane-related pathways are more strongly activated in Trem2-/- mice, suggesting that TREM2 may exert its effects by influencing lysosomal membranes and autophagy. Mechanistically, we demonstrated that the knockout of Trem2 can reduce the nuclear translocation of TFEB by decreasing the phosphorylation of Syk. Furthermore, we validated that in vitro and in vivo silencing Trem2 can promote autophagy by repairing lysosomal membrane permeabilization. Through immunofluorescence, 3D gait analysis, motor evoked potential experiments, H&E staining and Masson staining, we demonstrated that the increased level of autophagy can rescue more microglia in vivo and promote both functional and histological recovery of spinal cord injury. Collectively, these results not only suggest that microglial lysosomal autophagy is regulated in a TREM2-dependent LMP manner, but also, more importantly, they provide a promising clinical translation strategy based on gene therapy for lysosome-related central nervous system disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信