Tao He, Qiuwen Tan, Yizhou Huang, Jun Chen, Jie Tan, Chen Zhou, Li Xu, Rong Nie, Qingyi Zhang, Peng Liang, Qing Lv, Hui-Qi Xie
{"title":"载脂肪干细胞的细胞外脂肪基质水凝胶调节巨噬细胞极化促进全层皮肤伤口修复。","authors":"Tao He, Qiuwen Tan, Yizhou Huang, Jun Chen, Jie Tan, Chen Zhou, Li Xu, Rong Nie, Qingyi Zhang, Peng Liang, Qing Lv, Hui-Qi Xie","doi":"10.1021/acs.biomac.5c00194","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived stem cells (ADSC) represent a promising approach for wound healing, while the limited survival rate has restricted their application. To address this, we equipped a hydrogel from acellular porcine adipose tissue (HAPA) with ADSC to fabricate the HAPA + ADSC composite hydrogel. In addition to serving as a carrier for stem cell delivery, the bioactive components of the HAPA hydrogel support immune regulation and tissue repair. In this study, we demonstrated that the HAPA + ADSC composite could effectively modulate macrophage polarization, promote angiogenesis, and regulate extracellular matrix (ECM) deposition and remodeling, thereby substantially accelerating wound healing. Additionally, transcriptomic sequencing analysis indicated that the HAPA + ADSC composite upregulated Nfkbia and Nfkbie to inhibit the nuclear transcription of RelA-p50 heterodimer so that macrophages polarization toward an M1 phenotype is suppressed. The combined effects of ADSC and HAPA hydrogel make it a promising candidate for functional skin wound healing.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular Adipose Matrix Hydrogel Laden with Adipose-Derived Stem Cell Modulates Macrophage Polarization for Enhanced Full-Thickness Skin Wound Repair.\",\"authors\":\"Tao He, Qiuwen Tan, Yizhou Huang, Jun Chen, Jie Tan, Chen Zhou, Li Xu, Rong Nie, Qingyi Zhang, Peng Liang, Qing Lv, Hui-Qi Xie\",\"doi\":\"10.1021/acs.biomac.5c00194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose-derived stem cells (ADSC) represent a promising approach for wound healing, while the limited survival rate has restricted their application. To address this, we equipped a hydrogel from acellular porcine adipose tissue (HAPA) with ADSC to fabricate the HAPA + ADSC composite hydrogel. In addition to serving as a carrier for stem cell delivery, the bioactive components of the HAPA hydrogel support immune regulation and tissue repair. In this study, we demonstrated that the HAPA + ADSC composite could effectively modulate macrophage polarization, promote angiogenesis, and regulate extracellular matrix (ECM) deposition and remodeling, thereby substantially accelerating wound healing. Additionally, transcriptomic sequencing analysis indicated that the HAPA + ADSC composite upregulated Nfkbia and Nfkbie to inhibit the nuclear transcription of RelA-p50 heterodimer so that macrophages polarization toward an M1 phenotype is suppressed. The combined effects of ADSC and HAPA hydrogel make it a promising candidate for functional skin wound healing.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.5c00194\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00194","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Extracellular Adipose Matrix Hydrogel Laden with Adipose-Derived Stem Cell Modulates Macrophage Polarization for Enhanced Full-Thickness Skin Wound Repair.
Adipose-derived stem cells (ADSC) represent a promising approach for wound healing, while the limited survival rate has restricted their application. To address this, we equipped a hydrogel from acellular porcine adipose tissue (HAPA) with ADSC to fabricate the HAPA + ADSC composite hydrogel. In addition to serving as a carrier for stem cell delivery, the bioactive components of the HAPA hydrogel support immune regulation and tissue repair. In this study, we demonstrated that the HAPA + ADSC composite could effectively modulate macrophage polarization, promote angiogenesis, and regulate extracellular matrix (ECM) deposition and remodeling, thereby substantially accelerating wound healing. Additionally, transcriptomic sequencing analysis indicated that the HAPA + ADSC composite upregulated Nfkbia and Nfkbie to inhibit the nuclear transcription of RelA-p50 heterodimer so that macrophages polarization toward an M1 phenotype is suppressed. The combined effects of ADSC and HAPA hydrogel make it a promising candidate for functional skin wound healing.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.