{"title":"硅研究表明,- obo单元结合在yb11 (obo) 12 - $$ \\mathbf{Y} {\\mathbf{B}}_{11} ( \\mathbf{O} \\mathbf{B} \\mathbf{O} {)}_{12}^{-} $$ (Y = C/Si)阴离子中的稳定硼笼上,为钙离子电池提供了理想的富硼固体电解质界面。","authors":"Abhiruchi Sharma, Puneet Gupta","doi":"10.1002/cssc.202500154","DOIUrl":null,"url":null,"abstract":"<p><p>The development of calcium-ion batteries (CIBs) as potential successors to lithium-ion batteries has been hindered by the lack of suitable electrolytes. Conventional electrolytes often decompose on the Ca anode, forming calcium-ion impermeable passivation layers that impede reversible calcium plating and stripping. Therefore, the design of stable electrolytes or those capable of forming Ca<sup>2+</sup> permeable passivation layers remains a critical challenge. The present study investigates calcium salts of <math> <semantics> <mrow> <msub><mrow><mtext>YB</mtext></mrow> <mrow><mn>11</mn></mrow> </msub> <msubsup><mi>X</mi> <mrow><mn>12</mn></mrow> <mo>-</mo></msubsup> </mrow> <annotation>$\\left(\\text{YB}\\right)_{11} \\text{X}_{12}^{-}$</annotation></semantics> </math> (Y = C/Si and X = -BO/OBO) anions using density functional theory (DFT)-based simulations for CIBs. DFT calculations emphasize the oxidative stability of anions, while ab initio molecular dynamics (AIMD) simulations reveal their reductive behavior on the Ca anode. Time-dependent charge transfer analysis and projected density of states provide an atomistic perspective on electron transfer between the Ca surface and anions, aligning with observations from frontier orbital analyses. Decomposition of <math> <semantics> <mrow> <msub><mrow><mtext>YB</mtext></mrow> <mrow><mn>11</mn></mrow> </msub> <msubsup> <mrow><mrow><mo>(</mo> <mrow><mtext>OBO</mtext></mrow> <mo>)</mo></mrow> </mrow> <mrow><mn>12</mn></mrow> <mo>-</mo></msubsup> </mrow> <annotation>$\\left(\\text{YB}\\right)_{11} \\left(\\left(\\right. \\text{OBO} \\left.\\right)\\right)_{12}^{-}$</annotation></semantics> </math> (Y = C/Si) anions during AIMD simulation reveals the formation of borate-based species as part of the solid electrolyte interface, suggesting their potential as electrolytes that enable effective calcium plating and stripping. Overall, this work paves the way for designing efficient electrolytes, offering a fresh perspective to identify optimal CIB electrolytes, and moving beyond ensuring electrolyte stability on the Ca anode.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500154"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">In Silico Studies Show that -OBO Units Bound to Stable Boron Cages in <ns0:math> <ns0:semantics><ns0:mrow><ns0:mi>Y</ns0:mi> <ns0:msub><ns0:mi>B</ns0:mi> <ns0:mn>11</ns0:mn></ns0:msub> <ns0:msubsup><ns0:mrow><ns0:mo>(</ns0:mo> <ns0:mi>O</ns0:mi> <ns0:mi>B</ns0:mi> <ns0:mi>O</ns0:mi> <ns0:mo>)</ns0:mo></ns0:mrow> <ns0:mn>12</ns0:mn> <ns0:mo>-</ns0:mo></ns0:msubsup> </ns0:mrow> <ns0:annotation>$$ \\\\mathbf{Y} {\\\\mathbf{B}}_{11} ( \\\\mathbf{O} \\\\mathbf{B} \\\\mathbf{O} {)}_{12}^{-} $$</ns0:annotation></ns0:semantics> </ns0:math> (Y = C/Si) Anions Provide a Desirable Borate-Rich Solid Electrolyte Interface in Ca-Ion Batteries.\",\"authors\":\"Abhiruchi Sharma, Puneet Gupta\",\"doi\":\"10.1002/cssc.202500154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of calcium-ion batteries (CIBs) as potential successors to lithium-ion batteries has been hindered by the lack of suitable electrolytes. Conventional electrolytes often decompose on the Ca anode, forming calcium-ion impermeable passivation layers that impede reversible calcium plating and stripping. Therefore, the design of stable electrolytes or those capable of forming Ca<sup>2+</sup> permeable passivation layers remains a critical challenge. The present study investigates calcium salts of <math> <semantics> <mrow> <msub><mrow><mtext>YB</mtext></mrow> <mrow><mn>11</mn></mrow> </msub> <msubsup><mi>X</mi> <mrow><mn>12</mn></mrow> <mo>-</mo></msubsup> </mrow> <annotation>$\\\\left(\\\\text{YB}\\\\right)_{11} \\\\text{X}_{12}^{-}$</annotation></semantics> </math> (Y = C/Si and X = -BO/OBO) anions using density functional theory (DFT)-based simulations for CIBs. DFT calculations emphasize the oxidative stability of anions, while ab initio molecular dynamics (AIMD) simulations reveal their reductive behavior on the Ca anode. Time-dependent charge transfer analysis and projected density of states provide an atomistic perspective on electron transfer between the Ca surface and anions, aligning with observations from frontier orbital analyses. Decomposition of <math> <semantics> <mrow> <msub><mrow><mtext>YB</mtext></mrow> <mrow><mn>11</mn></mrow> </msub> <msubsup> <mrow><mrow><mo>(</mo> <mrow><mtext>OBO</mtext></mrow> <mo>)</mo></mrow> </mrow> <mrow><mn>12</mn></mrow> <mo>-</mo></msubsup> </mrow> <annotation>$\\\\left(\\\\text{YB}\\\\right)_{11} \\\\left(\\\\left(\\\\right. \\\\text{OBO} \\\\left.\\\\right)\\\\right)_{12}^{-}$</annotation></semantics> </math> (Y = C/Si) anions during AIMD simulation reveals the formation of borate-based species as part of the solid electrolyte interface, suggesting their potential as electrolytes that enable effective calcium plating and stripping. Overall, this work paves the way for designing efficient electrolytes, offering a fresh perspective to identify optimal CIB electrolytes, and moving beyond ensuring electrolyte stability on the Ca anode.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2500154\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500154\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500154","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In Silico Studies Show that -OBO Units Bound to Stable Boron Cages in YB11(OBO)12-$$ \mathbf{Y} {\mathbf{B}}_{11} ( \mathbf{O} \mathbf{B} \mathbf{O} {)}_{12}^{-} $$ (Y = C/Si) Anions Provide a Desirable Borate-Rich Solid Electrolyte Interface in Ca-Ion Batteries.
The development of calcium-ion batteries (CIBs) as potential successors to lithium-ion batteries has been hindered by the lack of suitable electrolytes. Conventional electrolytes often decompose on the Ca anode, forming calcium-ion impermeable passivation layers that impede reversible calcium plating and stripping. Therefore, the design of stable electrolytes or those capable of forming Ca2+ permeable passivation layers remains a critical challenge. The present study investigates calcium salts of (Y = C/Si and X = -BO/OBO) anions using density functional theory (DFT)-based simulations for CIBs. DFT calculations emphasize the oxidative stability of anions, while ab initio molecular dynamics (AIMD) simulations reveal their reductive behavior on the Ca anode. Time-dependent charge transfer analysis and projected density of states provide an atomistic perspective on electron transfer between the Ca surface and anions, aligning with observations from frontier orbital analyses. Decomposition of (Y = C/Si) anions during AIMD simulation reveals the formation of borate-based species as part of the solid electrolyte interface, suggesting their potential as electrolytes that enable effective calcium plating and stripping. Overall, this work paves the way for designing efficient electrolytes, offering a fresh perspective to identify optimal CIB electrolytes, and moving beyond ensuring electrolyte stability on the Ca anode.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology