Jie Liu, Hao Deng, Qing-Chun Yin, Min-Fu Wu, Lin Luo, Hong Wang, Zhen-Lin Xu, Bao-Zhu Jia
{"title":"壳聚糖-铂纳米酶介导的双催化级联比例荧光免疫传感器用于虫腈的灵敏检测。","authors":"Jie Liu, Hao Deng, Qing-Chun Yin, Min-Fu Wu, Lin Luo, Hong Wang, Zhen-Lin Xu, Bao-Zhu Jia","doi":"10.1016/j.talanta.2025.128162","DOIUrl":null,"url":null,"abstract":"<p><p>Organophosphorus pesticide residues pose significant threats to food safety and environmental health, and their monitoring methods demand sensitivity and anti-interference capability. In this study, we developed a novel ratiometric fluorescent immunosensor for fenitrothion (FN) detection by employing chitosan-modified platinum nanoparticles (Ch-Pt NPs) as catalytic nanozymes. Ch-Pt NPs exhibit oxidase-mimicking activity, enabling the oxidation of ascorbic acid (AA) and o-phenylenediamine (OPD) to produce dehydroascorbic acid (DHAA) and 2,3-diaminophenazine (DAP, Em = 568 nm), respectively. Then, DHAA further reacted with the remaining OPD to generate quinoxaline derivatives (DFQ, Em = 430 nm). These two products further form ratiometric fluorescent signals. Taking AA as a breakthrough point, the dual-catalytic cascade of natural enzymes and nanozymes was achieved by the combination with the alkaline phosphatase (ALP) -based enzyme-linked immunosorbent assay (ALP-ELISA). Compared with the conventional colorimetric ELISA, the proposed sensor demonstrated a nearly 20-fold enhancement in sensitivity (detection limit: 0.48 ng/mL) and achieved satisfactory recoveries of 80.0-108.3 % in spiked samples. The ratiometric fluorescent immunosensor demonstrates outstanding performance and holds great potential for extensive applications in the field of pesticide monitoring.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"293 ","pages":"128162"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan-platinum nanozyme-mediated ratiometric fluorescent immunosensor with dual catalytic cascades for sensitive detection of fenitrothion.\",\"authors\":\"Jie Liu, Hao Deng, Qing-Chun Yin, Min-Fu Wu, Lin Luo, Hong Wang, Zhen-Lin Xu, Bao-Zhu Jia\",\"doi\":\"10.1016/j.talanta.2025.128162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organophosphorus pesticide residues pose significant threats to food safety and environmental health, and their monitoring methods demand sensitivity and anti-interference capability. In this study, we developed a novel ratiometric fluorescent immunosensor for fenitrothion (FN) detection by employing chitosan-modified platinum nanoparticles (Ch-Pt NPs) as catalytic nanozymes. Ch-Pt NPs exhibit oxidase-mimicking activity, enabling the oxidation of ascorbic acid (AA) and o-phenylenediamine (OPD) to produce dehydroascorbic acid (DHAA) and 2,3-diaminophenazine (DAP, Em = 568 nm), respectively. Then, DHAA further reacted with the remaining OPD to generate quinoxaline derivatives (DFQ, Em = 430 nm). These two products further form ratiometric fluorescent signals. Taking AA as a breakthrough point, the dual-catalytic cascade of natural enzymes and nanozymes was achieved by the combination with the alkaline phosphatase (ALP) -based enzyme-linked immunosorbent assay (ALP-ELISA). Compared with the conventional colorimetric ELISA, the proposed sensor demonstrated a nearly 20-fold enhancement in sensitivity (detection limit: 0.48 ng/mL) and achieved satisfactory recoveries of 80.0-108.3 % in spiked samples. The ratiometric fluorescent immunosensor demonstrates outstanding performance and holds great potential for extensive applications in the field of pesticide monitoring.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"293 \",\"pages\":\"128162\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.128162\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128162","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
有机磷农药残留对食品安全和环境健康构成重大威胁,其监测方法要求灵敏度高、抗干扰能力强。本研究以壳聚糖修饰的铂纳米粒子(Ch-Pt NPs)为催化纳米酶,开发了一种新型的比例荧光免疫传感器,用于检测非硝基离子(FN)。Ch-Pt NPs具有模仿氧化酶的活性,可以氧化抗坏血酸(AA)和邻苯二胺(OPD),分别生成脱氢抗坏血酸(DHAA)和2,3-二氨基苯那嗪(DAP, Em = 568 nm)。然后,DHAA与剩余的OPD进一步反应生成喹啉衍生物(DFQ, Em = 430 nm)。这两种产物进一步形成比例荧光信号。以AA为突破口,结合基于碱性磷酸酶(ALP)的酶联免疫吸附试验(ALP- elisa),实现天然酶与纳米酶的双催化级联。与传统的比色ELISA相比,该传感器的灵敏度提高了近20倍(检测限为0.48 ng/mL),加标样品的回收率为80.0 ~ 108.3%。比例荧光免疫传感器具有优异的性能,在农药监测领域具有广阔的应用前景。
Chitosan-platinum nanozyme-mediated ratiometric fluorescent immunosensor with dual catalytic cascades for sensitive detection of fenitrothion.
Organophosphorus pesticide residues pose significant threats to food safety and environmental health, and their monitoring methods demand sensitivity and anti-interference capability. In this study, we developed a novel ratiometric fluorescent immunosensor for fenitrothion (FN) detection by employing chitosan-modified platinum nanoparticles (Ch-Pt NPs) as catalytic nanozymes. Ch-Pt NPs exhibit oxidase-mimicking activity, enabling the oxidation of ascorbic acid (AA) and o-phenylenediamine (OPD) to produce dehydroascorbic acid (DHAA) and 2,3-diaminophenazine (DAP, Em = 568 nm), respectively. Then, DHAA further reacted with the remaining OPD to generate quinoxaline derivatives (DFQ, Em = 430 nm). These two products further form ratiometric fluorescent signals. Taking AA as a breakthrough point, the dual-catalytic cascade of natural enzymes and nanozymes was achieved by the combination with the alkaline phosphatase (ALP) -based enzyme-linked immunosorbent assay (ALP-ELISA). Compared with the conventional colorimetric ELISA, the proposed sensor demonstrated a nearly 20-fold enhancement in sensitivity (detection limit: 0.48 ng/mL) and achieved satisfactory recoveries of 80.0-108.3 % in spiked samples. The ratiometric fluorescent immunosensor demonstrates outstanding performance and holds great potential for extensive applications in the field of pesticide monitoring.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.