用于神经形态计算模拟突触的cmos兼容质子三端忆阻器。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lingli Liu, Putu Andhita Dananjaya, Eng Kang Koh, Funan Tan, Ze Chen, Gerard Joseph Lim, Calvin Xiu Xian Lee, Jin-Lin Yang, Wen Siang Lew
{"title":"用于神经形态计算模拟突触的cmos兼容质子三端忆阻器。","authors":"Lingli Liu, Putu Andhita Dananjaya, Eng Kang Koh, Funan Tan, Ze Chen, Gerard Joseph Lim, Calvin Xiu Xian Lee, Jin-Lin Yang, Wen Siang Lew","doi":"10.1002/smtd.202500445","DOIUrl":null,"url":null,"abstract":"<p><p>All-solid-state inorganic hydrogen-based three-terminal memristors (H-3TMs) suffer from poor retention, susceptibility to humidity and temperature, and the reliance on wet chemistry during fabrication, hindering their manufacturability within existing foundry processes. To address these, this study presents a CMOS-compatible H-3TM based on reversible intercalation and extraction of protons between the SiN<sub>x</sub> electrolyte and WO<sub>x</sub> channel. The protons are introduced via a straightforward hydrogen plasma treatment, promoting a compatible fabrication process with back-end-of-line integration. Experimental and simulation results indicate that the low proton transport tendency across the electrolyte/channel interface without an external electric field contributes to high retention performance. Furthermore, the device demonstrates linear potentiation and depression, 512 conductance states with a dynamic range of ≈40, low energy operation (≈73 fJ per write), and excellent overall device-to-device variation. Its analog properties are evaluated under the training and inference framework of MNIST and Fashion-MNIST datasets. The device achieved training and inference accuracies only 0.4% and 0.3% below the ideal benchmark on the F-MNIST dataset. This work offers a rational approach for future artificial synaptic device design and fabrication.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500445"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMOS-Compatible Protonic Three-Terminal Memristor for Analog Synapse in Neuromorphic Computing.\",\"authors\":\"Lingli Liu, Putu Andhita Dananjaya, Eng Kang Koh, Funan Tan, Ze Chen, Gerard Joseph Lim, Calvin Xiu Xian Lee, Jin-Lin Yang, Wen Siang Lew\",\"doi\":\"10.1002/smtd.202500445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All-solid-state inorganic hydrogen-based three-terminal memristors (H-3TMs) suffer from poor retention, susceptibility to humidity and temperature, and the reliance on wet chemistry during fabrication, hindering their manufacturability within existing foundry processes. To address these, this study presents a CMOS-compatible H-3TM based on reversible intercalation and extraction of protons between the SiN<sub>x</sub> electrolyte and WO<sub>x</sub> channel. The protons are introduced via a straightforward hydrogen plasma treatment, promoting a compatible fabrication process with back-end-of-line integration. Experimental and simulation results indicate that the low proton transport tendency across the electrolyte/channel interface without an external electric field contributes to high retention performance. Furthermore, the device demonstrates linear potentiation and depression, 512 conductance states with a dynamic range of ≈40, low energy operation (≈73 fJ per write), and excellent overall device-to-device variation. Its analog properties are evaluated under the training and inference framework of MNIST and Fashion-MNIST datasets. The device achieved training and inference accuracies only 0.4% and 0.3% below the ideal benchmark on the F-MNIST dataset. This work offers a rational approach for future artificial synaptic device design and fabrication.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500445\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500445\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500445","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全固态无机氢基三端忆阻器(H-3TMs)的保持性差,易受湿度和温度的影响,并且在制造过程中依赖湿化学,这阻碍了它们在现有铸造工艺中的可制造性。为了解决这些问题,本研究提出了一种基于SiNx电解质和WOx通道之间可逆插入和提取质子的cmos兼容H-3TM。质子通过直接的氢等离子体处理引入,促进了与后端集成兼容的制造工艺。实验和模拟结果表明,在没有外加电场的情况下,质子在电解质/通道界面上的低输运倾向有助于提高保持性能。此外,该器件具有线性增强和线性抑制,512个电导状态,动态范围≈40,低能量运行(每次写入≈73 fJ),以及出色的器件间整体变化。在MNIST和Fashion-MNIST数据集的训练和推理框架下对其模拟性能进行了评估。该设备在F-MNIST数据集上实现的训练和推理精度仅比理想基准低0.4%和0.3%。本研究为未来人工突触装置的设计与制造提供了合理的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMOS-Compatible Protonic Three-Terminal Memristor for Analog Synapse in Neuromorphic Computing.

All-solid-state inorganic hydrogen-based three-terminal memristors (H-3TMs) suffer from poor retention, susceptibility to humidity and temperature, and the reliance on wet chemistry during fabrication, hindering their manufacturability within existing foundry processes. To address these, this study presents a CMOS-compatible H-3TM based on reversible intercalation and extraction of protons between the SiNx electrolyte and WOx channel. The protons are introduced via a straightforward hydrogen plasma treatment, promoting a compatible fabrication process with back-end-of-line integration. Experimental and simulation results indicate that the low proton transport tendency across the electrolyte/channel interface without an external electric field contributes to high retention performance. Furthermore, the device demonstrates linear potentiation and depression, 512 conductance states with a dynamic range of ≈40, low energy operation (≈73 fJ per write), and excellent overall device-to-device variation. Its analog properties are evaluated under the training and inference framework of MNIST and Fashion-MNIST datasets. The device achieved training and inference accuracies only 0.4% and 0.3% below the ideal benchmark on the F-MNIST dataset. This work offers a rational approach for future artificial synaptic device design and fabrication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信