触摸无形:通过多感官艺术探索细胞内宿主-病原体相互作用。

IF 3.2 4区 医学 Q3 CELL BIOLOGY
Rachel Elizabeth Jackson, Georgia Miller, Rachel Weild, Svetlana Atlavina, Frances Aylward, Elizabeth Harris, Richard Hayward, Camilla Godlee
{"title":"触摸无形:通过多感官艺术探索细胞内宿主-病原体相互作用。","authors":"Rachel Elizabeth Jackson, Georgia Miller, Rachel Weild, Svetlana Atlavina, Frances Aylward, Elizabeth Harris, Richard Hayward, Camilla Godlee","doi":"10.1111/imcb.70019","DOIUrl":null,"url":null,"abstract":"<p><p>The microscopic world of intracellular bacteria is rarely communicated to non-scientists. By participating in the Sensory Science Exhibition, held at St Catharine's College, University of Cambridge as part of the Cambridge Festival, we sought to address this problem by creating a 3D mammalian cell with model bacteria, including Salmonella enterica, Chlamydia trachomatis and Orientia tsutsugamushi. By hijacking eukaryotic host cellular machinery and avoiding detection, these bacteria orchestrate their survival and replication within host cells. This tactile display aimed to guide participants through key aspects of intracellular bacterial life cycles such as host cell entry, Salmonella type three secretion system (T3SS) protein secretion, O. tsutsugamushi trafficking along microtubules, and C. trachomatis replication within an inclusion. We summarize our experiences in this report. We hope our multisensory conceptualization of intracellular bacteria provided inclusive and easy-to-understand communication of complex science concepts to the general public with modalities also accessible to the low-vision and blind communities.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Touching the invisible: exploring intracellular host-pathogen interactions through multisensory art.\",\"authors\":\"Rachel Elizabeth Jackson, Georgia Miller, Rachel Weild, Svetlana Atlavina, Frances Aylward, Elizabeth Harris, Richard Hayward, Camilla Godlee\",\"doi\":\"10.1111/imcb.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microscopic world of intracellular bacteria is rarely communicated to non-scientists. By participating in the Sensory Science Exhibition, held at St Catharine's College, University of Cambridge as part of the Cambridge Festival, we sought to address this problem by creating a 3D mammalian cell with model bacteria, including Salmonella enterica, Chlamydia trachomatis and Orientia tsutsugamushi. By hijacking eukaryotic host cellular machinery and avoiding detection, these bacteria orchestrate their survival and replication within host cells. This tactile display aimed to guide participants through key aspects of intracellular bacterial life cycles such as host cell entry, Salmonella type three secretion system (T3SS) protein secretion, O. tsutsugamushi trafficking along microtubules, and C. trachomatis replication within an inclusion. We summarize our experiences in this report. We hope our multisensory conceptualization of intracellular bacteria provided inclusive and easy-to-understand communication of complex science concepts to the general public with modalities also accessible to the low-vision and blind communities.</p>\",\"PeriodicalId\":179,\"journal\":{\"name\":\"Immunology & Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology & Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/imcb.70019\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/imcb.70019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞内细菌的微观世界很少传达给非科学家。通过参加剑桥大学圣凯瑟琳学院举办的感官科学展览,作为剑桥节的一部分,我们试图通过用模型细菌(包括肠沙门氏菌、沙眼衣原体和恙虫病东方体)创建3D哺乳动物细胞来解决这个问题。通过劫持真核宿主的细胞机制和避免检测,这些细菌在宿主细胞内协调它们的生存和复制。这种触觉展示旨在引导参与者了解细胞内细菌生命周期的关键方面,如宿主细胞进入、沙门氏菌3型分泌系统(T3SS)蛋白分泌、恙虫病敖体沿微管运输以及沙眼原体在包涵体内的复制。我们在这份报告中总结了我们的经验。我们希望我们对细胞内细菌的多感官概念化能为普通公众提供包容和易于理解的复杂科学概念的交流,同时也为低视力和盲人社区提供可访问的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Touching the invisible: exploring intracellular host-pathogen interactions through multisensory art.

The microscopic world of intracellular bacteria is rarely communicated to non-scientists. By participating in the Sensory Science Exhibition, held at St Catharine's College, University of Cambridge as part of the Cambridge Festival, we sought to address this problem by creating a 3D mammalian cell with model bacteria, including Salmonella enterica, Chlamydia trachomatis and Orientia tsutsugamushi. By hijacking eukaryotic host cellular machinery and avoiding detection, these bacteria orchestrate their survival and replication within host cells. This tactile display aimed to guide participants through key aspects of intracellular bacterial life cycles such as host cell entry, Salmonella type three secretion system (T3SS) protein secretion, O. tsutsugamushi trafficking along microtubules, and C. trachomatis replication within an inclusion. We summarize our experiences in this report. We hope our multisensory conceptualization of intracellular bacteria provided inclusive and easy-to-understand communication of complex science concepts to the general public with modalities also accessible to the low-vision and blind communities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunology & Cell Biology
Immunology & Cell Biology 医学-免疫学
CiteScore
7.50
自引率
2.50%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信