少突胶质细胞髓磷脂形成通过层粘连蛋白411及其衍生肽增强。

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Glia Pub Date : 2025-05-08 DOI:10.1002/glia.70027
Binri Sasaki, Momo Oishi, Tomoka Aoki, Mai Hyodo, Chinami Onchi, Nanako Yamada, Hitomi Misawa, Momona Yamada, Chikako Hayashi, Kiyotoshi Sekiguchi, Keisuke Hamada, Yuji Yamada, Yamato Kikkawa, Motoyoshi Nomizu, Nobuharu Suzuki
{"title":"少突胶质细胞髓磷脂形成通过层粘连蛋白411及其衍生肽增强。","authors":"Binri Sasaki,&nbsp;Momo Oishi,&nbsp;Tomoka Aoki,&nbsp;Mai Hyodo,&nbsp;Chinami Onchi,&nbsp;Nanako Yamada,&nbsp;Hitomi Misawa,&nbsp;Momona Yamada,&nbsp;Chikako Hayashi,&nbsp;Kiyotoshi Sekiguchi,&nbsp;Keisuke Hamada,&nbsp;Yuji Yamada,&nbsp;Yamato Kikkawa,&nbsp;Motoyoshi Nomizu,&nbsp;Nobuharu Suzuki","doi":"10.1002/glia.70027","DOIUrl":null,"url":null,"abstract":"<p>In the central nervous system, oligodendrocytes (OLs) form myelin sheaths that accomplish the efficient transmission of nerve conduction for optimal motor and cognitive functions. OL development and differentiation are regulated by a variety of molecules, including extracellular matrix (ECM) proteins. ECM proteins are also useful as substrates for OL culture. However, the functions of ECM proteins in OL development and myelination remain unclear, and only a limited number of ECM proteins have been characterized and used in in vitro experiments. Here, we investigated the expression and function of laminin (LM) isoforms in OL differentiation and myelination. We found that LM α1, α2, and α4 chains were expressed around blood vessels at the stage of myelination in mice. Functional analyses using recombinant proteins of LM isoforms containing α1, α2, and α4 chains revealed that LM411 and LM411E8, the integrin binding domain of LM411, possessed significant activities in myelin membrane formation of OLs. Furthermore, the peptide A4G47 derived from LM411E8 promoted the activity, which provides evidence of the first peptide in OL myelin formation from ECM proteins. Our findings facilitate a better understanding of ECM functions in OL biology and the development of a new material in OL myelination.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 8","pages":"1692-1706"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.70027","citationCount":"0","resultStr":"{\"title\":\"Myelin Formation by Oligodendrocytes Is Enhanced Through Laminin-411 and Its Derived Peptide\",\"authors\":\"Binri Sasaki,&nbsp;Momo Oishi,&nbsp;Tomoka Aoki,&nbsp;Mai Hyodo,&nbsp;Chinami Onchi,&nbsp;Nanako Yamada,&nbsp;Hitomi Misawa,&nbsp;Momona Yamada,&nbsp;Chikako Hayashi,&nbsp;Kiyotoshi Sekiguchi,&nbsp;Keisuke Hamada,&nbsp;Yuji Yamada,&nbsp;Yamato Kikkawa,&nbsp;Motoyoshi Nomizu,&nbsp;Nobuharu Suzuki\",\"doi\":\"10.1002/glia.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the central nervous system, oligodendrocytes (OLs) form myelin sheaths that accomplish the efficient transmission of nerve conduction for optimal motor and cognitive functions. OL development and differentiation are regulated by a variety of molecules, including extracellular matrix (ECM) proteins. ECM proteins are also useful as substrates for OL culture. However, the functions of ECM proteins in OL development and myelination remain unclear, and only a limited number of ECM proteins have been characterized and used in in vitro experiments. Here, we investigated the expression and function of laminin (LM) isoforms in OL differentiation and myelination. We found that LM α1, α2, and α4 chains were expressed around blood vessels at the stage of myelination in mice. Functional analyses using recombinant proteins of LM isoforms containing α1, α2, and α4 chains revealed that LM411 and LM411E8, the integrin binding domain of LM411, possessed significant activities in myelin membrane formation of OLs. Furthermore, the peptide A4G47 derived from LM411E8 promoted the activity, which provides evidence of the first peptide in OL myelin formation from ECM proteins. Our findings facilitate a better understanding of ECM functions in OL biology and the development of a new material in OL myelination.</p>\",\"PeriodicalId\":174,\"journal\":{\"name\":\"Glia\",\"volume\":\"73 8\",\"pages\":\"1692-1706\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.70027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/glia.70027\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.70027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在中枢神经系统中,少突胶质细胞(OLs)形成髓鞘,完成神经传导的有效传递,以实现最佳的运动和认知功能。OL的发育和分化受多种分子的调控,包括细胞外基质(ECM)蛋白。ECM蛋白也可用作OL培养的底物。然而,ECM蛋白在OL发育和髓鞘形成中的功能尚不清楚,只有有限数量的ECM蛋白被表征并用于体外实验。在这里,我们研究了层粘胶蛋白(LM)异构体在OL分化和髓鞘形成中的表达和功能。我们发现在小鼠髓鞘形成阶段,LM α1、α2和α4链在血管周围表达。利用含有α1、α2和α4链的LM异构体重组蛋白进行功能分析发现,LM411的整合素结合域LM411和LM411E8在OLs髓鞘膜形成中具有显著活性。此外,从LM411E8衍生的肽A4G47促进了这种活性,这为ECM蛋白形成OL髓磷脂的第一个肽提供了证据。我们的发现有助于更好地理解ECM在OL生物学中的功能,以及开发一种新的OL髓鞘形成材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Myelin Formation by Oligodendrocytes Is Enhanced Through Laminin-411 and Its Derived Peptide

Myelin Formation by Oligodendrocytes Is Enhanced Through Laminin-411 and Its Derived Peptide

In the central nervous system, oligodendrocytes (OLs) form myelin sheaths that accomplish the efficient transmission of nerve conduction for optimal motor and cognitive functions. OL development and differentiation are regulated by a variety of molecules, including extracellular matrix (ECM) proteins. ECM proteins are also useful as substrates for OL culture. However, the functions of ECM proteins in OL development and myelination remain unclear, and only a limited number of ECM proteins have been characterized and used in in vitro experiments. Here, we investigated the expression and function of laminin (LM) isoforms in OL differentiation and myelination. We found that LM α1, α2, and α4 chains were expressed around blood vessels at the stage of myelination in mice. Functional analyses using recombinant proteins of LM isoforms containing α1, α2, and α4 chains revealed that LM411 and LM411E8, the integrin binding domain of LM411, possessed significant activities in myelin membrane formation of OLs. Furthermore, the peptide A4G47 derived from LM411E8 promoted the activity, which provides evidence of the first peptide in OL myelin formation from ECM proteins. Our findings facilitate a better understanding of ECM functions in OL biology and the development of a new material in OL myelination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信