{"title":"m6A RNA甲基化修饰的mrna在奶山羊睾丸发育中的转录组研究。","authors":"Xinyang Ren, Yingxin Qu, Akang Shari, Guang Li","doi":"10.1080/10495398.2025.2496641","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m<sup>6</sup>A) is an important epigenetic modification in RNA, playing a crucial role in regulating the production and aging of animal testicular sperm. This study extracted mRNA from the testicular tissue of male goats before and after sexual maturity, generating a methylation map through preliminary experiments and methylation immunoprecipitation sequencing. The results showed that during the development of dairy goats, the expression levels of marker genes related to testicular development and methylation-related enzymes changed significantly. A total of 36,602 peaks and 11,223 genes were identified in the two groups, including 2989 differential peaks (427 upregulated and 2562 downregulated) and 1457 differentially expressed genes (833 upregulated and 624 downregulated). The abundance of m<sup>6</sup>A was positively correlated with gene expression levels. This study reports for the first time the mRNA profiles of m<sup>6</sup>A modifications across the entire transcriptome during testicular development in Guanzhong dairy goats, providing a new perspective for genetic improvement in goats.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2496641"},"PeriodicalIF":1.7000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome-wide study of mRNAs modified by m<sup>6</sup>A RNA methylation in the testis development of dairy goats.\",\"authors\":\"Xinyang Ren, Yingxin Qu, Akang Shari, Guang Li\",\"doi\":\"10.1080/10495398.2025.2496641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N6-methyladenosine (m<sup>6</sup>A) is an important epigenetic modification in RNA, playing a crucial role in regulating the production and aging of animal testicular sperm. This study extracted mRNA from the testicular tissue of male goats before and after sexual maturity, generating a methylation map through preliminary experiments and methylation immunoprecipitation sequencing. The results showed that during the development of dairy goats, the expression levels of marker genes related to testicular development and methylation-related enzymes changed significantly. A total of 36,602 peaks and 11,223 genes were identified in the two groups, including 2989 differential peaks (427 upregulated and 2562 downregulated) and 1457 differentially expressed genes (833 upregulated and 624 downregulated). The abundance of m<sup>6</sup>A was positively correlated with gene expression levels. This study reports for the first time the mRNA profiles of m<sup>6</sup>A modifications across the entire transcriptome during testicular development in Guanzhong dairy goats, providing a new perspective for genetic improvement in goats.</p>\",\"PeriodicalId\":7836,\"journal\":{\"name\":\"Animal Biotechnology\",\"volume\":\"36 1\",\"pages\":\"2496641\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10495398.2025.2496641\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2025.2496641","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Transcriptome-wide study of mRNAs modified by m6A RNA methylation in the testis development of dairy goats.
N6-methyladenosine (m6A) is an important epigenetic modification in RNA, playing a crucial role in regulating the production and aging of animal testicular sperm. This study extracted mRNA from the testicular tissue of male goats before and after sexual maturity, generating a methylation map through preliminary experiments and methylation immunoprecipitation sequencing. The results showed that during the development of dairy goats, the expression levels of marker genes related to testicular development and methylation-related enzymes changed significantly. A total of 36,602 peaks and 11,223 genes were identified in the two groups, including 2989 differential peaks (427 upregulated and 2562 downregulated) and 1457 differentially expressed genes (833 upregulated and 624 downregulated). The abundance of m6A was positively correlated with gene expression levels. This study reports for the first time the mRNA profiles of m6A modifications across the entire transcriptome during testicular development in Guanzhong dairy goats, providing a new perspective for genetic improvement in goats.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes