{"title":"医院环境中真菌的流行及其抗真菌和消毒剂耐药性:对抗医院真菌病的见解。","authors":"Soudabeh Ghodsi, Mahnaz Nikaeen, Shima Aboutalebian, Rasoul Mohammadi, Hossein Mirhendi","doi":"10.1186/s13756-025-01558-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fungal infections are increasingly recognized as a global health concern, contributing to considerable morbidity and mortality in hospital settings. This underscores the urgent need for infection prevention and control in healthcare facilities to protect vulnerable patients from the risk of acquiring invasive fungal diseases (IFDs). Given the critical role of transmission-based precautions in limiting the spread of filamentous fungi responsible for IFDs, this study was conducted to explore the potential role of the hospital environment in the dissemination of these infections.</p><p><strong>Methods: </strong>A total of 83 samples were collected from the air and surface of exhaust vents in the intensive care units (ICUs) of hospitals in Isfahan, Iran, to assess the presence and diversity of fungal species. Susceptibility testing against antifungal agents, including commonly used drugs and disinfectants, was performed on the identified fungal isolates. Furthermore, the antifungal resistance profiles of isolates from clinical IFD cases were compared with those of environmental isolates.</p><p><strong>Results: </strong>Fungi were detected in 45% of air samples and 100% of exhaust vent samples, with Aspergillus species being the most commonly identified genus. Mucorales were also found in 17% of exhaust vent samples. Aspergillus spp. and Rhizopus spp. showed the highest resistance to Amphotericin B, and a considerable proportion of these isolates exhibited simultaneous resistance to disinfectants. A similar antifungal resistance profile was noted between A. flavus and some R. arrhizus isolates from both environmental and clinical samples.</p><p><strong>Conclusions: </strong>The findings of this study indicate that the hospital environment, particularly exhaust vents, may act as a significant reservoir for causative agents of IFDs. This highlights the importance of environmental surveillance in preventing and controlling nosocomial fungal infections.</p>","PeriodicalId":7950,"journal":{"name":"Antimicrobial Resistance and Infection Control","volume":"14 1","pages":"37"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020322/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prevalence of fungi and their antifungal and disinfectant resistance in hospital environments: insights into combating nosocomial mycoses.\",\"authors\":\"Soudabeh Ghodsi, Mahnaz Nikaeen, Shima Aboutalebian, Rasoul Mohammadi, Hossein Mirhendi\",\"doi\":\"10.1186/s13756-025-01558-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Fungal infections are increasingly recognized as a global health concern, contributing to considerable morbidity and mortality in hospital settings. This underscores the urgent need for infection prevention and control in healthcare facilities to protect vulnerable patients from the risk of acquiring invasive fungal diseases (IFDs). Given the critical role of transmission-based precautions in limiting the spread of filamentous fungi responsible for IFDs, this study was conducted to explore the potential role of the hospital environment in the dissemination of these infections.</p><p><strong>Methods: </strong>A total of 83 samples were collected from the air and surface of exhaust vents in the intensive care units (ICUs) of hospitals in Isfahan, Iran, to assess the presence and diversity of fungal species. Susceptibility testing against antifungal agents, including commonly used drugs and disinfectants, was performed on the identified fungal isolates. Furthermore, the antifungal resistance profiles of isolates from clinical IFD cases were compared with those of environmental isolates.</p><p><strong>Results: </strong>Fungi were detected in 45% of air samples and 100% of exhaust vent samples, with Aspergillus species being the most commonly identified genus. Mucorales were also found in 17% of exhaust vent samples. Aspergillus spp. and Rhizopus spp. showed the highest resistance to Amphotericin B, and a considerable proportion of these isolates exhibited simultaneous resistance to disinfectants. A similar antifungal resistance profile was noted between A. flavus and some R. arrhizus isolates from both environmental and clinical samples.</p><p><strong>Conclusions: </strong>The findings of this study indicate that the hospital environment, particularly exhaust vents, may act as a significant reservoir for causative agents of IFDs. This highlights the importance of environmental surveillance in preventing and controlling nosocomial fungal infections.</p>\",\"PeriodicalId\":7950,\"journal\":{\"name\":\"Antimicrobial Resistance and Infection Control\",\"volume\":\"14 1\",\"pages\":\"37\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020322/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antimicrobial Resistance and Infection Control\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13756-025-01558-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Resistance and Infection Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13756-025-01558-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Prevalence of fungi and their antifungal and disinfectant resistance in hospital environments: insights into combating nosocomial mycoses.
Background: Fungal infections are increasingly recognized as a global health concern, contributing to considerable morbidity and mortality in hospital settings. This underscores the urgent need for infection prevention and control in healthcare facilities to protect vulnerable patients from the risk of acquiring invasive fungal diseases (IFDs). Given the critical role of transmission-based precautions in limiting the spread of filamentous fungi responsible for IFDs, this study was conducted to explore the potential role of the hospital environment in the dissemination of these infections.
Methods: A total of 83 samples were collected from the air and surface of exhaust vents in the intensive care units (ICUs) of hospitals in Isfahan, Iran, to assess the presence and diversity of fungal species. Susceptibility testing against antifungal agents, including commonly used drugs and disinfectants, was performed on the identified fungal isolates. Furthermore, the antifungal resistance profiles of isolates from clinical IFD cases were compared with those of environmental isolates.
Results: Fungi were detected in 45% of air samples and 100% of exhaust vent samples, with Aspergillus species being the most commonly identified genus. Mucorales were also found in 17% of exhaust vent samples. Aspergillus spp. and Rhizopus spp. showed the highest resistance to Amphotericin B, and a considerable proportion of these isolates exhibited simultaneous resistance to disinfectants. A similar antifungal resistance profile was noted between A. flavus and some R. arrhizus isolates from both environmental and clinical samples.
Conclusions: The findings of this study indicate that the hospital environment, particularly exhaust vents, may act as a significant reservoir for causative agents of IFDs. This highlights the importance of environmental surveillance in preventing and controlling nosocomial fungal infections.
期刊介绍:
Antimicrobial Resistance and Infection Control is a global forum for all those working on the prevention, diagnostic and treatment of health-care associated infections and antimicrobial resistance development in all health-care settings. The journal covers a broad spectrum of preeminent practices and best available data to the top interventional and translational research, and innovative developments in the field of infection control.