iPiDA-LGE:用于识别pirna -疾病关联的局部和全局图集成学习框架。

IF 4.4 1区 生物学 Q1 BIOLOGY
Hang Wei, Jialu Hou, Yumeng Liu, Alexey K Shaytan, Bin Liu, Hao Wu
{"title":"iPiDA-LGE:用于识别pirna -疾病关联的局部和全局图集成学习框架。","authors":"Hang Wei, Jialu Hou, Yumeng Liu, Alexey K Shaytan, Bin Liu, Hao Wu","doi":"10.1186/s12915-025-02221-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Exploring piRNA-disease associations can help discover candidate diagnostic or prognostic biomarkers and therapeutic targets. Several computational methods have been presented for identifying associations between piRNAs and diseases. However, the existing methods encounter challenges such as over-smoothing in feature learning and overlooking specific local proximity relationships, resulting in limited representation of piRNA-disease pairs and insufficient detection of association patterns.</p><p><strong>Results: </strong>In this study, we propose a novel computational method called iPiDA-LGE for piRNA-disease association identification. iPiDA-LGE comprises two graph convolutional neural network modules based on local and global piRNA-disease graphs, aimed at capturing specific and general features of piRNA-disease pairs. Additionally, it integrates their refined and macroscopic inferences to derive the final prediction result.</p><p><strong>Conclusions: </strong>The experimental results show that iPiDA-LGE effectively leverages the advantages of both local and global graph learning, thereby achieving more discriminative pair representation and superior predictive performance.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"119"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065364/pdf/","citationCount":"0","resultStr":"{\"title\":\"iPiDA-LGE: a local and global graph ensemble learning framework for identifying piRNA-disease associations.\",\"authors\":\"Hang Wei, Jialu Hou, Yumeng Liu, Alexey K Shaytan, Bin Liu, Hao Wu\",\"doi\":\"10.1186/s12915-025-02221-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Exploring piRNA-disease associations can help discover candidate diagnostic or prognostic biomarkers and therapeutic targets. Several computational methods have been presented for identifying associations between piRNAs and diseases. However, the existing methods encounter challenges such as over-smoothing in feature learning and overlooking specific local proximity relationships, resulting in limited representation of piRNA-disease pairs and insufficient detection of association patterns.</p><p><strong>Results: </strong>In this study, we propose a novel computational method called iPiDA-LGE for piRNA-disease association identification. iPiDA-LGE comprises two graph convolutional neural network modules based on local and global piRNA-disease graphs, aimed at capturing specific and general features of piRNA-disease pairs. Additionally, it integrates their refined and macroscopic inferences to derive the final prediction result.</p><p><strong>Conclusions: </strong>The experimental results show that iPiDA-LGE effectively leverages the advantages of both local and global graph learning, thereby achieving more discriminative pair representation and superior predictive performance.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"23 1\",\"pages\":\"119\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065364/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-025-02221-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02221-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:探索pirna与疾病的关联有助于发现候选的诊断或预后生物标志物和治疗靶点。已经提出了几种计算方法来确定pirna与疾病之间的关联。然而,现有的方法在特征学习中存在过度平滑和忽略特定的局部接近关系等问题,导致pirna -疾病对的表征有限,关联模式检测不足。结果:在本研究中,我们提出了一种新的计算方法,称为iPiDA-LGE,用于pirna -疾病关联鉴定。iPiDA-LGE包括基于局部和全局pirna疾病图的两个图卷积神经网络模块,旨在捕获pirna疾病对的特定和一般特征。此外,它整合了它们的精细化和宏观推断,得出最终的预测结果。结论:实验结果表明,iPiDA-LGE有效地利用了局部和全局图学习的优势,从而实现了更具判别性的对表示和更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
iPiDA-LGE: a local and global graph ensemble learning framework for identifying piRNA-disease associations.

Background: Exploring piRNA-disease associations can help discover candidate diagnostic or prognostic biomarkers and therapeutic targets. Several computational methods have been presented for identifying associations between piRNAs and diseases. However, the existing methods encounter challenges such as over-smoothing in feature learning and overlooking specific local proximity relationships, resulting in limited representation of piRNA-disease pairs and insufficient detection of association patterns.

Results: In this study, we propose a novel computational method called iPiDA-LGE for piRNA-disease association identification. iPiDA-LGE comprises two graph convolutional neural network modules based on local and global piRNA-disease graphs, aimed at capturing specific and general features of piRNA-disease pairs. Additionally, it integrates their refined and macroscopic inferences to derive the final prediction result.

Conclusions: The experimental results show that iPiDA-LGE effectively leverages the advantages of both local and global graph learning, thereby achieving more discriminative pair representation and superior predictive performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信