用计算方法建立疾病自然史的第一步:从努南综合征用例中吸取的教训。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-05-01 Epub Date: 2025-04-16 DOI:10.1016/j.ajhg.2025.03.014
Tudor Groza, Warittha Rayabsri, Dylan Gration, Harshini Hariram, Saumya Shekhar Jamuar, Gareth Baynam
{"title":"用计算方法建立疾病自然史的第一步:从努南综合征用例中吸取的教训。","authors":"Tudor Groza, Warittha Rayabsri, Dylan Gration, Harshini Hariram, Saumya Shekhar Jamuar, Gareth Baynam","doi":"10.1016/j.ajhg.2025.03.014","DOIUrl":null,"url":null,"abstract":"<p><p>Rare diseases (RDs) are conditions affecting fewer than 1 in 2,000 people, with over 7,000 identified, primarily genetic in nature, and more than half impacting children. Although each RD affects a small population, collectively, between 3.5% and 5.9% of the global population, or 262.9-446.2 million people, live with an RD. Most RDs lack established treatment protocols, highlighting the need for proper care pathways addressing prognosis, diagnosis, and management. Advances in generative AI and large language models (LLMs) offer new opportunities to document the temporal progression of phenotypic features, addressing gaps in current knowledge bases. This study proposes an LLM-based framework to capture the natural history of diseases, specifically focusing on Noonan syndrome. The framework aims to document phenotypic trajectories, validate against RD knowledge bases, and integrate insights into care coordination using electronic health record (EHR) data from the Undiagnosed Diseases Program Singapore.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"112 5","pages":"1158-1172"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120186/pdf/","citationCount":"0","resultStr":"{\"title\":\"First steps toward building natural history of diseases computationally: Lessons learned from the Noonan syndrome use case.\",\"authors\":\"Tudor Groza, Warittha Rayabsri, Dylan Gration, Harshini Hariram, Saumya Shekhar Jamuar, Gareth Baynam\",\"doi\":\"10.1016/j.ajhg.2025.03.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rare diseases (RDs) are conditions affecting fewer than 1 in 2,000 people, with over 7,000 identified, primarily genetic in nature, and more than half impacting children. Although each RD affects a small population, collectively, between 3.5% and 5.9% of the global population, or 262.9-446.2 million people, live with an RD. Most RDs lack established treatment protocols, highlighting the need for proper care pathways addressing prognosis, diagnosis, and management. Advances in generative AI and large language models (LLMs) offer new opportunities to document the temporal progression of phenotypic features, addressing gaps in current knowledge bases. This study proposes an LLM-based framework to capture the natural history of diseases, specifically focusing on Noonan syndrome. The framework aims to document phenotypic trajectories, validate against RD knowledge bases, and integrate insights into care coordination using electronic health record (EHR) data from the Undiagnosed Diseases Program Singapore.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\"112 5\",\"pages\":\"1158-1172\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.03.014\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.03.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

罕见病是指每2 000人中影响不到1人的疾病,已查明的疾病有7 000多种,主要是遗传性疾病,半数以上影响儿童。虽然每一种RD影响一小部分人群,但总的来说,全球人口的3.5%至5.9%,即2.629亿至4.462亿人患有RD。大多数RD缺乏既定的治疗方案,这突出表明需要针对预后、诊断和管理的适当护理途径。生成式人工智能和大型语言模型(llm)的进步为记录表型特征的时间进展提供了新的机会,解决了当前知识库中的空白。本研究提出了一个基于法学硕士的框架来捕捉疾病的自然史,特别关注努南综合征。该框架旨在记录表型轨迹,根据研发知识库进行验证,并利用新加坡未确诊疾病计划的电子健康记录(EHR)数据将见解整合到护理协调中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First steps toward building natural history of diseases computationally: Lessons learned from the Noonan syndrome use case.

Rare diseases (RDs) are conditions affecting fewer than 1 in 2,000 people, with over 7,000 identified, primarily genetic in nature, and more than half impacting children. Although each RD affects a small population, collectively, between 3.5% and 5.9% of the global population, or 262.9-446.2 million people, live with an RD. Most RDs lack established treatment protocols, highlighting the need for proper care pathways addressing prognosis, diagnosis, and management. Advances in generative AI and large language models (LLMs) offer new opportunities to document the temporal progression of phenotypic features, addressing gaps in current knowledge bases. This study proposes an LLM-based framework to capture the natural history of diseases, specifically focusing on Noonan syndrome. The framework aims to document phenotypic trajectories, validate against RD knowledge bases, and integrate insights into care coordination using electronic health record (EHR) data from the Undiagnosed Diseases Program Singapore.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信