A. V. Zakharov , E. E. Evsikova , P. D. Grebennikova , M. A. Krylova , A. N. Fakhrutdinov , V. Z. Shirinian
{"title":"邻联芳基附加查尔酮的无金属、可见光介导的光转化:获得草酸[5]螺旋烯和1,2,3,4-四取代环丁烷。","authors":"A. V. Zakharov , E. E. Evsikova , P. D. Grebennikova , M. A. Krylova , A. N. Fakhrutdinov , V. Z. Shirinian","doi":"10.1039/d5ob00490j","DOIUrl":null,"url":null,"abstract":"<div><div>Visible-light-mediated metal-free irreversible phototransformations of <em>ortho</em>-bihetaryl appended chalcones are reported. Isosteric replacement of one of the aryl residues with a chalcone fragment in diarylethene (terarylene) molecules leads to a significant expansion of the synthetic capabilities of these compounds, thereby opening up access to a wide range of new functional materials. It was found for the first time that protonation of the carbonyl group in the chalcone moiety of <em>ortho</em>-bihetarylchalcones exclusively promotes 6π-photocyclization leading to the formation of oxathia[5]helicenes, whereas 1,2,3,4-tetrasubstituted cyclobutanes are preferably formed upon photolysis in toluene in the presence of triethylamine. The formation of the helicene framework is due to visible light-induced 6π-electrocyclization of the hexatriene system of bihetaryl chalcones, and [2 + 2]-photocycloaddition is facilitated by the aggregation of chalcone molecules, which is a consequence of the formation of a head-to-head excimer due to π–π-stacking interactions of naphthofuran polyaromatic systems. These results will provide valuable information on the photocyclization of new diarylethene analogues, which can be used to develop new efficient protocols for the synthesis of fused heteroaromatic frameworks and promising materials with wide applications in material science, molecular electronics and medicine.</div></div>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":"23 21","pages":"Pages 5182-5190"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-free, visible-light-mediated phototransformations of ortho-biaryl appended chalcones: access to oxathia[5]helicenes and 1,2,3,4-tetrasubstituted cyclobutanes†\",\"authors\":\"A. V. Zakharov , E. E. Evsikova , P. D. Grebennikova , M. A. Krylova , A. N. Fakhrutdinov , V. Z. Shirinian\",\"doi\":\"10.1039/d5ob00490j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visible-light-mediated metal-free irreversible phototransformations of <em>ortho</em>-bihetaryl appended chalcones are reported. Isosteric replacement of one of the aryl residues with a chalcone fragment in diarylethene (terarylene) molecules leads to a significant expansion of the synthetic capabilities of these compounds, thereby opening up access to a wide range of new functional materials. It was found for the first time that protonation of the carbonyl group in the chalcone moiety of <em>ortho</em>-bihetarylchalcones exclusively promotes 6π-photocyclization leading to the formation of oxathia[5]helicenes, whereas 1,2,3,4-tetrasubstituted cyclobutanes are preferably formed upon photolysis in toluene in the presence of triethylamine. The formation of the helicene framework is due to visible light-induced 6π-electrocyclization of the hexatriene system of bihetaryl chalcones, and [2 + 2]-photocycloaddition is facilitated by the aggregation of chalcone molecules, which is a consequence of the formation of a head-to-head excimer due to π–π-stacking interactions of naphthofuran polyaromatic systems. These results will provide valuable information on the photocyclization of new diarylethene analogues, which can be used to develop new efficient protocols for the synthesis of fused heteroaromatic frameworks and promising materials with wide applications in material science, molecular electronics and medicine.</div></div>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\"23 21\",\"pages\":\"Pages 5182-5190\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1477052025003623\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052025003623","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Metal-free, visible-light-mediated phototransformations of ortho-biaryl appended chalcones: access to oxathia[5]helicenes and 1,2,3,4-tetrasubstituted cyclobutanes†
Visible-light-mediated metal-free irreversible phototransformations of ortho-bihetaryl appended chalcones are reported. Isosteric replacement of one of the aryl residues with a chalcone fragment in diarylethene (terarylene) molecules leads to a significant expansion of the synthetic capabilities of these compounds, thereby opening up access to a wide range of new functional materials. It was found for the first time that protonation of the carbonyl group in the chalcone moiety of ortho-bihetarylchalcones exclusively promotes 6π-photocyclization leading to the formation of oxathia[5]helicenes, whereas 1,2,3,4-tetrasubstituted cyclobutanes are preferably formed upon photolysis in toluene in the presence of triethylamine. The formation of the helicene framework is due to visible light-induced 6π-electrocyclization of the hexatriene system of bihetaryl chalcones, and [2 + 2]-photocycloaddition is facilitated by the aggregation of chalcone molecules, which is a consequence of the formation of a head-to-head excimer due to π–π-stacking interactions of naphthofuran polyaromatic systems. These results will provide valuable information on the photocyclization of new diarylethene analogues, which can be used to develop new efficient protocols for the synthesis of fused heteroaromatic frameworks and promising materials with wide applications in material science, molecular electronics and medicine.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.