植物生物学中靶蛋白降解的操纵。

IF 4.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Marcela Rojas-Pierce, Sebastian Y Bednarek
{"title":"植物生物学中靶蛋白降解的操纵。","authors":"Marcela Rojas-Pierce, Sebastian Y Bednarek","doi":"10.1042/BST20230939","DOIUrl":null,"url":null,"abstract":"<p><p>Inducible protein degradation systems are an important but untapped resource for the study of protein function in plant cells. Unlike mutagenesis or transcriptional control, regulated degradation of proteins of interest allows the study of the biological mechanisms of highly dynamic cellular processes involving essential proteins. While systems for targeted protein degradation are available for research and therapeutics in animals, there are currently limited options in plant biology. Targeted protein degradation systems rely on target ubiquitination by E3 ubiquitin ligases. Systems that are available or being developed in plants can be distinguished primarily by the type of E3 ubiquitin ligase involved, including those that utilize Cullin-RING ligases, bacterial novel E3 ligases, and N-end rule pathway E3 ligases, or they can be controlled by proteolysis targeting chimeras. Target protein ubiquitination leads to degradation by the proteasome or targeting to the vacuole, with both pathways being ubiquitous and important for the endogenous control of protein abundance in plants. Targeted proteolysis approaches for plants will likely be an important tool for basic research and to yield novel traits for crop biotechnology.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"53 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203931/pdf/","citationCount":"0","resultStr":"{\"title\":\"Manipulation of targeted protein degradation in plant biology.\",\"authors\":\"Marcela Rojas-Pierce, Sebastian Y Bednarek\",\"doi\":\"10.1042/BST20230939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inducible protein degradation systems are an important but untapped resource for the study of protein function in plant cells. Unlike mutagenesis or transcriptional control, regulated degradation of proteins of interest allows the study of the biological mechanisms of highly dynamic cellular processes involving essential proteins. While systems for targeted protein degradation are available for research and therapeutics in animals, there are currently limited options in plant biology. Targeted protein degradation systems rely on target ubiquitination by E3 ubiquitin ligases. Systems that are available or being developed in plants can be distinguished primarily by the type of E3 ubiquitin ligase involved, including those that utilize Cullin-RING ligases, bacterial novel E3 ligases, and N-end rule pathway E3 ligases, or they can be controlled by proteolysis targeting chimeras. Target protein ubiquitination leads to degradation by the proteasome or targeting to the vacuole, with both pathways being ubiquitous and important for the endogenous control of protein abundance in plants. Targeted proteolysis approaches for plants will likely be an important tool for basic research and to yield novel traits for crop biotechnology.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\"53 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203931/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20230939\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20230939","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

可诱导的蛋白质降解系统是研究植物细胞中蛋白质功能的重要但尚未开发的资源。与诱变或转录控制不同,感兴趣的蛋白质的调节降解允许研究涉及必需蛋白质的高度动态细胞过程的生物学机制。虽然靶向蛋白质降解系统可用于动物研究和治疗,但目前植物生物学的选择有限。靶向蛋白降解系统依赖于E3泛素连接酶的靶泛素化。植物中可用的或正在开发的系统可以主要通过所涉及的E3泛素连接酶的类型来区分,包括那些利用Cullin-RING连接酶、细菌新型E3连接酶和n端规则途径E3连接酶的系统,或者它们可以通过靶向嵌合体的蛋白水解来控制。靶蛋白泛素化导致蛋白酶体降解或靶向液泡,这两种途径普遍存在,对植物蛋白质丰度的内源控制很重要。植物靶向蛋白水解方法将可能成为基础研究和作物生物技术新特性产生的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manipulation of targeted protein degradation in plant biology.

Inducible protein degradation systems are an important but untapped resource for the study of protein function in plant cells. Unlike mutagenesis or transcriptional control, regulated degradation of proteins of interest allows the study of the biological mechanisms of highly dynamic cellular processes involving essential proteins. While systems for targeted protein degradation are available for research and therapeutics in animals, there are currently limited options in plant biology. Targeted protein degradation systems rely on target ubiquitination by E3 ubiquitin ligases. Systems that are available or being developed in plants can be distinguished primarily by the type of E3 ubiquitin ligase involved, including those that utilize Cullin-RING ligases, bacterial novel E3 ligases, and N-end rule pathway E3 ligases, or they can be controlled by proteolysis targeting chimeras. Target protein ubiquitination leads to degradation by the proteasome or targeting to the vacuole, with both pathways being ubiquitous and important for the endogenous control of protein abundance in plants. Targeted proteolysis approaches for plants will likely be an important tool for basic research and to yield novel traits for crop biotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信