3d打印分子模型对学生理解大分子结构的影响:一项补偿性研究。

IF 1.2 4区 教育学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Boiangiu Răzvan-Ștefan, Popa Laura Nicoleta, Marius Mihășan
{"title":"3d打印分子模型对学生理解大分子结构的影响:一项补偿性研究。","authors":"Boiangiu Răzvan-Ștefan, Popa Laura Nicoleta, Marius Mihășan","doi":"10.1002/bmb.21902","DOIUrl":null,"url":null,"abstract":"<p><p>A strong understanding of molecular structure is key for mastering structure-function concepts in life sciences and is based on the visualization of biomolecules. Therefore, various approaches to help students translate between the 2D space of a textbook figure to the 3D space of a molecule have been developed. Object-based learning is an approach that gives students a tangible way to view and manipulate physical structures in three dimensions, strengthening learning and challenging students to engage with and interrogate the object. In this work, atomically accurate physical models of macromolecules have been fabricated using consumer-grade 3D printers and integrated into two lectures. The impact of the models on students' ability to overcome common misunderstandings related to proteins and DNA structures was evaluated in a randomized controlled experiment using a compensatory research design. To our knowledge, this is the first time when such a design, where each of the two groups of students works alternatively as a control and as an intervention group, has been used to evaluate the impact of physical models on learning gains. Presenting the physical molecular models in the class and allowing students 3-5 min to handle them was enough to convert low-gain lectures into medium-gain lectures. The students found the models helpful because they offered a hands-on experience, enhancing their focus and engaging their visual memory. Despite some identified drawbacks, using physical models of molecules fabricated using 3D printing is a great way of improving bio-molecular education with low costs.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of 3D-printed molecular models on student understanding of macromolecular structures: a compensatory research study.\",\"authors\":\"Boiangiu Răzvan-Ștefan, Popa Laura Nicoleta, Marius Mihășan\",\"doi\":\"10.1002/bmb.21902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A strong understanding of molecular structure is key for mastering structure-function concepts in life sciences and is based on the visualization of biomolecules. Therefore, various approaches to help students translate between the 2D space of a textbook figure to the 3D space of a molecule have been developed. Object-based learning is an approach that gives students a tangible way to view and manipulate physical structures in three dimensions, strengthening learning and challenging students to engage with and interrogate the object. In this work, atomically accurate physical models of macromolecules have been fabricated using consumer-grade 3D printers and integrated into two lectures. The impact of the models on students' ability to overcome common misunderstandings related to proteins and DNA structures was evaluated in a randomized controlled experiment using a compensatory research design. To our knowledge, this is the first time when such a design, where each of the two groups of students works alternatively as a control and as an intervention group, has been used to evaluate the impact of physical models on learning gains. Presenting the physical molecular models in the class and allowing students 3-5 min to handle them was enough to convert low-gain lectures into medium-gain lectures. The students found the models helpful because they offered a hands-on experience, enhancing their focus and engaging their visual memory. Despite some identified drawbacks, using physical models of molecules fabricated using 3D printing is a great way of improving bio-molecular education with low costs.</p>\",\"PeriodicalId\":8830,\"journal\":{\"name\":\"Biochemistry and Molecular Biology Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Molecular Biology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1002/bmb.21902\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/bmb.21902","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对分子结构的深刻理解是掌握生命科学中结构-功能概念的关键,并且是基于生物分子的可视化。因此,人们开发了各种方法来帮助学生将课本图形的二维空间转换为分子的三维空间。基于对象的学习是一种方法,它为学生提供了一种有形的方式来观察和操作三维物理结构,加强学习,并挑战学生与对象的接触和询问。在这项工作中,使用消费级3D打印机制造了原子级精确的大分子物理模型,并将其集成到两个讲座中。在一项采用补偿研究设计的随机对照实验中,评估了这些模型对学生克服与蛋白质和DNA结构有关的常见误解的能力的影响。据我们所知,这是第一次使用这样的设计来评估物理模型对学习收益的影响,在这种设计中,两组学生中的每一组都作为对照组和干预组交替工作。在课堂上展示物理分子模型,让学生在3-5分钟内掌握这些模型,就足以将低收益的讲座转化为中收益的讲座。学生们发现这些模型很有帮助,因为它们提供了动手体验,增强了他们的注意力,并吸引了他们的视觉记忆。尽管存在一些已知的缺陷,但使用3D打印制造的分子物理模型是一种低成本改善生物分子教育的好方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of 3D-printed molecular models on student understanding of macromolecular structures: a compensatory research study.

A strong understanding of molecular structure is key for mastering structure-function concepts in life sciences and is based on the visualization of biomolecules. Therefore, various approaches to help students translate between the 2D space of a textbook figure to the 3D space of a molecule have been developed. Object-based learning is an approach that gives students a tangible way to view and manipulate physical structures in three dimensions, strengthening learning and challenging students to engage with and interrogate the object. In this work, atomically accurate physical models of macromolecules have been fabricated using consumer-grade 3D printers and integrated into two lectures. The impact of the models on students' ability to overcome common misunderstandings related to proteins and DNA structures was evaluated in a randomized controlled experiment using a compensatory research design. To our knowledge, this is the first time when such a design, where each of the two groups of students works alternatively as a control and as an intervention group, has been used to evaluate the impact of physical models on learning gains. Presenting the physical molecular models in the class and allowing students 3-5 min to handle them was enough to convert low-gain lectures into medium-gain lectures. The students found the models helpful because they offered a hands-on experience, enhancing their focus and engaging their visual memory. Despite some identified drawbacks, using physical models of molecules fabricated using 3D printing is a great way of improving bio-molecular education with low costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Molecular Biology Education
Biochemistry and Molecular Biology Education 生物-生化与分子生物学
CiteScore
2.60
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including: Innovative techniques in teaching and learning. New pedagogical approaches. Research in biochemistry and molecular biology education. Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc. Historical Reviews describing "Paths to Discovery". Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics. Reviews of relevant textbooks, software, and websites. Descriptions of software for educational use. Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信