I Ferrocino, G Zoumpopoulou, D Lali, R Anastasiou, A Agapaki, M Kazou, E Konstantakis, E Balafas, N P E Kadoglou, N Kostomitsopoulos, E Tsakalidou
{"title":"通过调节小鼠肠道菌群,口服发酵乳酸杆菌ACA-DC 179减轻载脂蛋白e缺乏小鼠动脉粥样硬化的进展。","authors":"I Ferrocino, G Zoumpopoulou, D Lali, R Anastasiou, A Agapaki, M Kazou, E Konstantakis, E Balafas, N P E Kadoglou, N Kostomitsopoulos, E Tsakalidou","doi":"10.1163/18762891-bja00064","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research findings have established a close relationship between gut microbiota and atherosclerosis development; hence, focus has shifted towards modifying gut microbiota through probiotics administration. We thereby investigated the impact of Limosilactobacillus fermentum ACA-DC 179 on the progression of atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Twelve-week-old ApoE-/- male and female mice were treated with low (106 CFU/mouse) or high (109 CFU/mouse) dose of L. fermentum ACA-DC 179 daily for 8 weeks. Microbiota of faeces during intervention and of gut content at study end was determined using classical microbiological and metataxonomic analyses. Additionally, blood serum biochemical markers and atherosclerotic lesions were evaluated in all animal groups. Classical microbiological analysis revealed high counts of Lactobacillus spp., Bifidobacterium spp. and Clostridium spp. for both male and female animals, regardless the treatment; however, at study end, L. fermentum ACA-DC 179 high dose managed to significantly increase Lactobacillus spp. counts of faeces of male mice. Metataxonomic analysis of faeces and gut content revealed significant differences among animal groups regarding either intestinal compartment, namely jejunum, ileum or colon, or probiotic treatment. A decrease in Lachnoclostridium and an increase in Erysipelatoclostridium were observed in faecal samples following probiotic treatment. This effect was consistent with the results obtained for all gut compartment samples of mice receiving the high dose of L. fermentum ACA-DC 179. Concerning main metabolism-related blood biomarkers, triglycerides decreased in animal groups of both sexes receiving L. fermentum ACA-DC 179. Moreover, L. fermentum ACA-DC 179 high dose significantly reduced atherosclerotic lesions in both male and female mice. Overall, our findings indicate that L. fermentum ACA-DC 179 administration attenuated the development of atherosclerosis in ApoE-/- mice supporting its beneficial potential in relevant human studies. Altered gut microbiota seems to play a significant role to this phenomenon and further studies should be conducted to elucidate underlying mechanisms.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-18"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limosilactobacillus fermentum ACA-DC 179 oral administration attenuates atherosclerosis progression in apolipoprotein E-deficient mice through murine gut microbiota modulation.\",\"authors\":\"I Ferrocino, G Zoumpopoulou, D Lali, R Anastasiou, A Agapaki, M Kazou, E Konstantakis, E Balafas, N P E Kadoglou, N Kostomitsopoulos, E Tsakalidou\",\"doi\":\"10.1163/18762891-bja00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent research findings have established a close relationship between gut microbiota and atherosclerosis development; hence, focus has shifted towards modifying gut microbiota through probiotics administration. We thereby investigated the impact of Limosilactobacillus fermentum ACA-DC 179 on the progression of atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Twelve-week-old ApoE-/- male and female mice were treated with low (106 CFU/mouse) or high (109 CFU/mouse) dose of L. fermentum ACA-DC 179 daily for 8 weeks. Microbiota of faeces during intervention and of gut content at study end was determined using classical microbiological and metataxonomic analyses. Additionally, blood serum biochemical markers and atherosclerotic lesions were evaluated in all animal groups. Classical microbiological analysis revealed high counts of Lactobacillus spp., Bifidobacterium spp. and Clostridium spp. for both male and female animals, regardless the treatment; however, at study end, L. fermentum ACA-DC 179 high dose managed to significantly increase Lactobacillus spp. counts of faeces of male mice. Metataxonomic analysis of faeces and gut content revealed significant differences among animal groups regarding either intestinal compartment, namely jejunum, ileum or colon, or probiotic treatment. A decrease in Lachnoclostridium and an increase in Erysipelatoclostridium were observed in faecal samples following probiotic treatment. This effect was consistent with the results obtained for all gut compartment samples of mice receiving the high dose of L. fermentum ACA-DC 179. Concerning main metabolism-related blood biomarkers, triglycerides decreased in animal groups of both sexes receiving L. fermentum ACA-DC 179. Moreover, L. fermentum ACA-DC 179 high dose significantly reduced atherosclerotic lesions in both male and female mice. Overall, our findings indicate that L. fermentum ACA-DC 179 administration attenuated the development of atherosclerosis in ApoE-/- mice supporting its beneficial potential in relevant human studies. Altered gut microbiota seems to play a significant role to this phenomenon and further studies should be conducted to elucidate underlying mechanisms.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-bja00064\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Limosilactobacillus fermentum ACA-DC 179 oral administration attenuates atherosclerosis progression in apolipoprotein E-deficient mice through murine gut microbiota modulation.
Recent research findings have established a close relationship between gut microbiota and atherosclerosis development; hence, focus has shifted towards modifying gut microbiota through probiotics administration. We thereby investigated the impact of Limosilactobacillus fermentum ACA-DC 179 on the progression of atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Twelve-week-old ApoE-/- male and female mice were treated with low (106 CFU/mouse) or high (109 CFU/mouse) dose of L. fermentum ACA-DC 179 daily for 8 weeks. Microbiota of faeces during intervention and of gut content at study end was determined using classical microbiological and metataxonomic analyses. Additionally, blood serum biochemical markers and atherosclerotic lesions were evaluated in all animal groups. Classical microbiological analysis revealed high counts of Lactobacillus spp., Bifidobacterium spp. and Clostridium spp. for both male and female animals, regardless the treatment; however, at study end, L. fermentum ACA-DC 179 high dose managed to significantly increase Lactobacillus spp. counts of faeces of male mice. Metataxonomic analysis of faeces and gut content revealed significant differences among animal groups regarding either intestinal compartment, namely jejunum, ileum or colon, or probiotic treatment. A decrease in Lachnoclostridium and an increase in Erysipelatoclostridium were observed in faecal samples following probiotic treatment. This effect was consistent with the results obtained for all gut compartment samples of mice receiving the high dose of L. fermentum ACA-DC 179. Concerning main metabolism-related blood biomarkers, triglycerides decreased in animal groups of both sexes receiving L. fermentum ACA-DC 179. Moreover, L. fermentum ACA-DC 179 high dose significantly reduced atherosclerotic lesions in both male and female mice. Overall, our findings indicate that L. fermentum ACA-DC 179 administration attenuated the development of atherosclerosis in ApoE-/- mice supporting its beneficial potential in relevant human studies. Altered gut microbiota seems to play a significant role to this phenomenon and further studies should be conducted to elucidate underlying mechanisms.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits