Yang Gao, Xinxin Chen, Chaoliang He, Zhen Zhang and Jiaao Yu
{"title":"通过微环境调节刺激反应水凝胶用于糖尿病伤口管理。","authors":"Yang Gao, Xinxin Chen, Chaoliang He, Zhen Zhang and Jiaao Yu","doi":"10.1039/D4BM01657B","DOIUrl":null,"url":null,"abstract":"<p >Diabetic wounds, a major complication of diabetes mellitus, pose a significant clinical challenge. The treatment of diabetic wounds requires comprehensive interventions tailored to their pathophysiological characteristics, such as recurring bacterial infection, persistent inflammation, excessive oxidative stress, and impaired angiogenesis. The development of stimulus-responsive hydrogel dressings offers new strategies for diabetic wound treatment. By responding to various physical and biochemical signals, these smart hydrogels enable real-time monitoring and precise modulation of the wound microenvironment to accelerate diabetic wound healing. In this review, we provide an overview of the disease characteristics of chronic diabetic wounds and introduce the current clinical treatment approaches. We summarize the cutting-edge applications of physical and biochemical signal-responsive hydrogels for diabetic wound treatment by modulating the wound microenvironment.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 12","pages":" 3192-3212"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimulus-responsive hydrogels for diabetic wound management via microenvironment modulation\",\"authors\":\"Yang Gao, Xinxin Chen, Chaoliang He, Zhen Zhang and Jiaao Yu\",\"doi\":\"10.1039/D4BM01657B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Diabetic wounds, a major complication of diabetes mellitus, pose a significant clinical challenge. The treatment of diabetic wounds requires comprehensive interventions tailored to their pathophysiological characteristics, such as recurring bacterial infection, persistent inflammation, excessive oxidative stress, and impaired angiogenesis. The development of stimulus-responsive hydrogel dressings offers new strategies for diabetic wound treatment. By responding to various physical and biochemical signals, these smart hydrogels enable real-time monitoring and precise modulation of the wound microenvironment to accelerate diabetic wound healing. In this review, we provide an overview of the disease characteristics of chronic diabetic wounds and introduce the current clinical treatment approaches. We summarize the cutting-edge applications of physical and biochemical signal-responsive hydrogels for diabetic wound treatment by modulating the wound microenvironment.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 12\",\"pages\":\" 3192-3212\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d4bm01657b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d4bm01657b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stimulus-responsive hydrogels for diabetic wound management via microenvironment modulation
Diabetic wounds, a major complication of diabetes mellitus, pose a significant clinical challenge. The treatment of diabetic wounds requires comprehensive interventions tailored to their pathophysiological characteristics, such as recurring bacterial infection, persistent inflammation, excessive oxidative stress, and impaired angiogenesis. The development of stimulus-responsive hydrogel dressings offers new strategies for diabetic wound treatment. By responding to various physical and biochemical signals, these smart hydrogels enable real-time monitoring and precise modulation of the wound microenvironment to accelerate diabetic wound healing. In this review, we provide an overview of the disease characteristics of chronic diabetic wounds and introduce the current clinical treatment approaches. We summarize the cutting-edge applications of physical and biochemical signal-responsive hydrogels for diabetic wound treatment by modulating the wound microenvironment.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.