肉牛用40k液体捕获芯片的研制与应用。

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-05-07 DOI:10.3390/ani15091346
Qing Liu, Liangyu Shi, Pu Zhang, Bo Yu, Chenhui Liu, Min Xiang, Shuilian Li, Lei Liu, Lei Cheng, Hongbo Chen
{"title":"肉牛用40k液体捕获芯片的研制与应用。","authors":"Qing Liu, Liangyu Shi, Pu Zhang, Bo Yu, Chenhui Liu, Min Xiang, Shuilian Li, Lei Liu, Lei Cheng, Hongbo Chen","doi":"10.3390/ani15091346","DOIUrl":null,"url":null,"abstract":"<p><p>The availability of genome sequences and single-nucleotide polymorphism (SNP) chips allows us to investigate the various genomic characteristics of species by exploring genetic diversity to aid genetic selection. The SNP chip is a cost-effective genotyping platform essential for molecular breeding of livestock. In this study, we developed a liquid SNP capture chip suitable for five Hubei (China) indigenous beef cattle breeds based on whole-genome sequencing datasets. The panel consisted of 42,686 SNPs (~40 K). These SNPs were evenly distributed on each bovine chromosome, with the majority of SNPs having minor allele frequencies >0.05 and located within intergenic regions. The performance evaluation of this SNP chip panel was proceeded by genotyping 200 individuals, revealing that this panel has a high SNP call rate of 99.48%. The SNP chip panel was further used to examine the population structure of a beef cattle population with 205 individuals and demonstrated the ability to differentiate between foreign and indigenous cattle breeds. The SNP chip was also used to determine the runs of homozygosity (ROH) within a local Hubei beef cattle population of 195 individuals. We identified 2547 ROH and several genes associated with economically important traits in the study population. Our findings demonstrate that this chip not only contributes to the understanding of the genetic characteristics of local beef cattle breeds but also provides valuable genetic information for future breeding programs, thereby improving their production efficiency and economic value.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071055/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Application of a 40 K Liquid Capture Chip for Beef Cattle.\",\"authors\":\"Qing Liu, Liangyu Shi, Pu Zhang, Bo Yu, Chenhui Liu, Min Xiang, Shuilian Li, Lei Liu, Lei Cheng, Hongbo Chen\",\"doi\":\"10.3390/ani15091346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability of genome sequences and single-nucleotide polymorphism (SNP) chips allows us to investigate the various genomic characteristics of species by exploring genetic diversity to aid genetic selection. The SNP chip is a cost-effective genotyping platform essential for molecular breeding of livestock. In this study, we developed a liquid SNP capture chip suitable for five Hubei (China) indigenous beef cattle breeds based on whole-genome sequencing datasets. The panel consisted of 42,686 SNPs (~40 K). These SNPs were evenly distributed on each bovine chromosome, with the majority of SNPs having minor allele frequencies >0.05 and located within intergenic regions. The performance evaluation of this SNP chip panel was proceeded by genotyping 200 individuals, revealing that this panel has a high SNP call rate of 99.48%. The SNP chip panel was further used to examine the population structure of a beef cattle population with 205 individuals and demonstrated the ability to differentiate between foreign and indigenous cattle breeds. The SNP chip was also used to determine the runs of homozygosity (ROH) within a local Hubei beef cattle population of 195 individuals. We identified 2547 ROH and several genes associated with economically important traits in the study population. Our findings demonstrate that this chip not only contributes to the understanding of the genetic characteristics of local beef cattle breeds but also provides valuable genetic information for future breeding programs, thereby improving their production efficiency and economic value.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15091346\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091346","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

基因组序列和单核苷酸多态性(SNP)芯片的可用性使我们能够通过探索遗传多样性来研究物种的各种基因组特征,以帮助遗传选择。SNP芯片是家畜分子育种中一种具有成本效益的基因分型平台。在这项研究中,我们基于全基因组测序数据集开发了一种适用于湖北(中国)五个地方肉牛品种的液体SNP捕获芯片。该面板由42,686个snp (~40 K)组成。这些snp均匀分布在牛的每条染色体上,大多数snp的等位基因频率较小,位于基因间区。通过对200个个体进行基因分型,对该SNP芯片面板进行性能评估,结果表明该面板具有99.48%的SNP调用率。SNP芯片面板进一步用于检查205只肉牛种群的种群结构,并证明了区分外国和本地牛品种的能力。该SNP芯片还用于确定湖北当地肉牛群体195只个体的纯合性(ROH)。我们在研究人群中鉴定出2547个ROH和几个与经济重要性状相关的基因。研究结果表明,该芯片不仅有助于了解地方肉牛品种的遗传特征,而且为未来的育种计划提供有价值的遗传信息,从而提高肉牛的生产效率和经济价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Application of a 40 K Liquid Capture Chip for Beef Cattle.

The availability of genome sequences and single-nucleotide polymorphism (SNP) chips allows us to investigate the various genomic characteristics of species by exploring genetic diversity to aid genetic selection. The SNP chip is a cost-effective genotyping platform essential for molecular breeding of livestock. In this study, we developed a liquid SNP capture chip suitable for five Hubei (China) indigenous beef cattle breeds based on whole-genome sequencing datasets. The panel consisted of 42,686 SNPs (~40 K). These SNPs were evenly distributed on each bovine chromosome, with the majority of SNPs having minor allele frequencies >0.05 and located within intergenic regions. The performance evaluation of this SNP chip panel was proceeded by genotyping 200 individuals, revealing that this panel has a high SNP call rate of 99.48%. The SNP chip panel was further used to examine the population structure of a beef cattle population with 205 individuals and demonstrated the ability to differentiate between foreign and indigenous cattle breeds. The SNP chip was also used to determine the runs of homozygosity (ROH) within a local Hubei beef cattle population of 195 individuals. We identified 2547 ROH and several genes associated with economically important traits in the study population. Our findings demonstrate that this chip not only contributes to the understanding of the genetic characteristics of local beef cattle breeds but also provides valuable genetic information for future breeding programs, thereby improving their production efficiency and economic value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信