术后人工晶状体倾斜从术前全晶状体几何使用机器学习。

IF 3.2 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-03-13 eCollection Date: 2025-04-01 DOI:10.1364/BOE.551733
Eduardo Martinez-Enriquez, Gonzalo Velarde-Rodríguez, Nicolás Alejandre-Alba, Derick Ansah, Sindhu Kishore, Álvaro de la Peña, Ramya Natarajan, Pravin Vaddavalli, Yue Zhao, Joseph O Okudolo, Dylan B McBee, Ugur Celik, Mujdat Cetin, Jen-Li Dong, Yuli Lim, Li Wang, Douglas Donald Koch, Scott MacRae, Susana Marcos
{"title":"术后人工晶状体倾斜从术前全晶状体几何使用机器学习。","authors":"Eduardo Martinez-Enriquez, Gonzalo Velarde-Rodríguez, Nicolás Alejandre-Alba, Derick Ansah, Sindhu Kishore, Álvaro de la Peña, Ramya Natarajan, Pravin Vaddavalli, Yue Zhao, Joseph O Okudolo, Dylan B McBee, Ugur Celik, Mujdat Cetin, Jen-Li Dong, Yuli Lim, Li Wang, Douglas Donald Koch, Scott MacRae, Susana Marcos","doi":"10.1364/BOE.551733","DOIUrl":null,"url":null,"abstract":"<p><p>In cataract surgery, the opacified crystalline lens is replaced by an artificial intraocular lens (IOL), requiring precise preoperative selection of parameters to optimize postoperative visual quality. Three-dimensional customized eye models, which can be constructed using quantitative data from anterior segment optical coherence tomography, provide a robust platform for virtual surgery. These models enable simulations and predictions of the optical outcomes for specific patients and selected IOLs. A critical step in building these models is estimating the IOL's tilt and position preoperatively based on the available preoperative geometrical information (ocular parameters). In this study, we present a machine learning model that, for the first time, incorporates the full shape geometry of the crystalline lens as candidate input features to predict the postoperative IOL tilt. Furthermore, we identify the most relevant features for this prediction task. Our model demonstrates statistically significantly lower estimation errors compared to a simple linear correlation method, reducing the estimation error by approximately 6%. These findings highlight the potential of this approach to enhance the accuracy of postoperative predictions. Further work is needed to examine the potential for such postoperative predictions to improve visual outcomes in cataract patients.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 4","pages":"1439-1456"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047715/pdf/","citationCount":"0","resultStr":"{\"title\":\"Postoperative intraocular lens tilt from preoperative full crystalline lens geometry using machine learning.\",\"authors\":\"Eduardo Martinez-Enriquez, Gonzalo Velarde-Rodríguez, Nicolás Alejandre-Alba, Derick Ansah, Sindhu Kishore, Álvaro de la Peña, Ramya Natarajan, Pravin Vaddavalli, Yue Zhao, Joseph O Okudolo, Dylan B McBee, Ugur Celik, Mujdat Cetin, Jen-Li Dong, Yuli Lim, Li Wang, Douglas Donald Koch, Scott MacRae, Susana Marcos\",\"doi\":\"10.1364/BOE.551733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cataract surgery, the opacified crystalline lens is replaced by an artificial intraocular lens (IOL), requiring precise preoperative selection of parameters to optimize postoperative visual quality. Three-dimensional customized eye models, which can be constructed using quantitative data from anterior segment optical coherence tomography, provide a robust platform for virtual surgery. These models enable simulations and predictions of the optical outcomes for specific patients and selected IOLs. A critical step in building these models is estimating the IOL's tilt and position preoperatively based on the available preoperative geometrical information (ocular parameters). In this study, we present a machine learning model that, for the first time, incorporates the full shape geometry of the crystalline lens as candidate input features to predict the postoperative IOL tilt. Furthermore, we identify the most relevant features for this prediction task. Our model demonstrates statistically significantly lower estimation errors compared to a simple linear correlation method, reducing the estimation error by approximately 6%. These findings highlight the potential of this approach to enhance the accuracy of postoperative predictions. Further work is needed to examine the potential for such postoperative predictions to improve visual outcomes in cataract patients.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 4\",\"pages\":\"1439-1456\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047715/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.551733\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.551733","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在白内障手术中,混浊的晶状体被人工人工晶状体(IOL)所取代,需要精确的术前参数选择以优化术后视觉质量。利用前段光学相干断层成像的定量数据构建三维定制眼模型,为虚拟手术提供了强大的平台。这些模型能够模拟和预测特定患者和选定iol的光学结果。建立这些模型的关键步骤是根据术前可用的几何信息(眼参数)预估人工晶状体的倾斜和位置。在这项研究中,我们首次提出了一种机器学习模型,该模型将晶状体的完整几何形状作为候选输入特征来预测术后IOL倾斜。此外,我们为这个预测任务确定了最相关的特征。与简单的线性相关方法相比,我们的模型在统计上显着降低了估计误差,将估计误差降低了约6%。这些发现强调了这种方法在提高术后预测准确性方面的潜力。需要进一步的工作来检验这种术后预测改善白内障患者视力结果的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Postoperative intraocular lens tilt from preoperative full crystalline lens geometry using machine learning.

In cataract surgery, the opacified crystalline lens is replaced by an artificial intraocular lens (IOL), requiring precise preoperative selection of parameters to optimize postoperative visual quality. Three-dimensional customized eye models, which can be constructed using quantitative data from anterior segment optical coherence tomography, provide a robust platform for virtual surgery. These models enable simulations and predictions of the optical outcomes for specific patients and selected IOLs. A critical step in building these models is estimating the IOL's tilt and position preoperatively based on the available preoperative geometrical information (ocular parameters). In this study, we present a machine learning model that, for the first time, incorporates the full shape geometry of the crystalline lens as candidate input features to predict the postoperative IOL tilt. Furthermore, we identify the most relevant features for this prediction task. Our model demonstrates statistically significantly lower estimation errors compared to a simple linear correlation method, reducing the estimation error by approximately 6%. These findings highlight the potential of this approach to enhance the accuracy of postoperative predictions. Further work is needed to examine the potential for such postoperative predictions to improve visual outcomes in cataract patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信