Max F Dudek, Brandon M Wenz, Christopher D Brown, Benjamin F Voight, Laura Almasy, Struan F A Grant
{"title":"通过肝脏中atac -seq定义的足迹qtl表征与转录因子结合相关的非编码变异。","authors":"Max F Dudek, Brandon M Wenz, Christopher D Brown, Benjamin F Voight, Laura Almasy, Struan F A Grant","doi":"10.1016/j.ajhg.2025.03.019","DOIUrl":null,"url":null,"abstract":"<p><p>Non-coding variants discovered by genome-wide association studies (GWASs) are enriched in regulatory elements harboring transcription factor (TF) binding motifs, strongly suggesting a connection between disease association and the disruption of cis-regulatory sequences. Occupancy of a TF inside a region of open chromatin can be detected in ATAC-seq where bound TFs block the transposase Tn5, leaving a pattern of relatively depleted Tn5 insertions known as a \"footprint.\" Here, we sought to identify variants associated with TF binding, or \"footprint quantitative trait loci\" (fpQTLs), in ATAC-seq data generated from 170 human liver samples. We used computational tools to scan the ATAC-seq reads to quantify TF binding likelihood as \"footprint scores\" at variants derived from whole-genome sequencing generated in the same samples. We tested for association between genotype and footprint score and observed 809 fpQTLs associated with footprint-inferred TF binding (FDR < 5%). Given that Tn5 insertion sites are measured with base-pair resolution, we show that fpQTLs can aid GWAS and QTL fine-mapping by precisely pinpointing TF activity within broad trait-associated loci where the underlying causal variant is unknown. Liver fpQTLs were strongly enriched across ChIP-seq peaks, liver expression QTLs (eQTLs), and liver-related GWAS loci, and their inferred effect on TF binding was concordant with their effect on underlying sequence motifs in 78% of cases. We conclude that fpQTLs can reveal causal GWAS variants, define the role of TF binding-site disruption in complex traits, and provide functional insights into non-coding variants, ultimately informing novel treatments for common diseases.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of non-coding variants associated with transcription-factor binding through ATAC-seq-defined footprint QTLs in liver.\",\"authors\":\"Max F Dudek, Brandon M Wenz, Christopher D Brown, Benjamin F Voight, Laura Almasy, Struan F A Grant\",\"doi\":\"10.1016/j.ajhg.2025.03.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-coding variants discovered by genome-wide association studies (GWASs) are enriched in regulatory elements harboring transcription factor (TF) binding motifs, strongly suggesting a connection between disease association and the disruption of cis-regulatory sequences. Occupancy of a TF inside a region of open chromatin can be detected in ATAC-seq where bound TFs block the transposase Tn5, leaving a pattern of relatively depleted Tn5 insertions known as a \\\"footprint.\\\" Here, we sought to identify variants associated with TF binding, or \\\"footprint quantitative trait loci\\\" (fpQTLs), in ATAC-seq data generated from 170 human liver samples. We used computational tools to scan the ATAC-seq reads to quantify TF binding likelihood as \\\"footprint scores\\\" at variants derived from whole-genome sequencing generated in the same samples. We tested for association between genotype and footprint score and observed 809 fpQTLs associated with footprint-inferred TF binding (FDR < 5%). Given that Tn5 insertion sites are measured with base-pair resolution, we show that fpQTLs can aid GWAS and QTL fine-mapping by precisely pinpointing TF activity within broad trait-associated loci where the underlying causal variant is unknown. Liver fpQTLs were strongly enriched across ChIP-seq peaks, liver expression QTLs (eQTLs), and liver-related GWAS loci, and their inferred effect on TF binding was concordant with their effect on underlying sequence motifs in 78% of cases. We conclude that fpQTLs can reveal causal GWAS variants, define the role of TF binding-site disruption in complex traits, and provide functional insights into non-coding variants, ultimately informing novel treatments for common diseases.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.03.019\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.03.019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Characterization of non-coding variants associated with transcription-factor binding through ATAC-seq-defined footprint QTLs in liver.
Non-coding variants discovered by genome-wide association studies (GWASs) are enriched in regulatory elements harboring transcription factor (TF) binding motifs, strongly suggesting a connection between disease association and the disruption of cis-regulatory sequences. Occupancy of a TF inside a region of open chromatin can be detected in ATAC-seq where bound TFs block the transposase Tn5, leaving a pattern of relatively depleted Tn5 insertions known as a "footprint." Here, we sought to identify variants associated with TF binding, or "footprint quantitative trait loci" (fpQTLs), in ATAC-seq data generated from 170 human liver samples. We used computational tools to scan the ATAC-seq reads to quantify TF binding likelihood as "footprint scores" at variants derived from whole-genome sequencing generated in the same samples. We tested for association between genotype and footprint score and observed 809 fpQTLs associated with footprint-inferred TF binding (FDR < 5%). Given that Tn5 insertion sites are measured with base-pair resolution, we show that fpQTLs can aid GWAS and QTL fine-mapping by precisely pinpointing TF activity within broad trait-associated loci where the underlying causal variant is unknown. Liver fpQTLs were strongly enriched across ChIP-seq peaks, liver expression QTLs (eQTLs), and liver-related GWAS loci, and their inferred effect on TF binding was concordant with their effect on underlying sequence motifs in 78% of cases. We conclude that fpQTLs can reveal causal GWAS variants, define the role of TF binding-site disruption in complex traits, and provide functional insights into non-coding variants, ultimately informing novel treatments for common diseases.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.