Yingjie Feng, Qiuqin Mao, Lei Hong, Xiaotian Wang, Chao Tao, Xiaojun Liu
{"title":"基于光声断层成像的深部组织血栓形成诱导的血氧变化的定量评估:一项离体研究。","authors":"Yingjie Feng, Qiuqin Mao, Lei Hong, Xiaotian Wang, Chao Tao, Xiaojun Liu","doi":"10.1364/BOE.557086","DOIUrl":null,"url":null,"abstract":"<p><p>The staging and classification of thrombosis hold significant clinical value for optimizing thrombus treatment strategies. In this study, we propose a quantitative method based on photoacoustic tomography for assessing thrombosis in deep tissues. By using inner chromophore signals as a correction factor, this approach minimizes the 'spectral coloring' effects caused by overlying heterogeneous tissues. <i>Ex vivo</i> experiments validate that the method acquires accurate spectra up to a depth of 30 mm across various tissue conditions. After calibration, the Pearson correlation coefficients calculated for the spectrum in deep tissue against the uncolored absorption spectrum is 15% higher, and the standard deviation of the Pearson correlation coefficients decreased by 58%. Sequential measurements capture time-dependent spectral changes of thrombus phantom during six days, providing a potential diagnostic reference for thrombus formation time and type. This method offers a non-invasive, practical tool for accurately quantifying thrombosis stages, which might be valuable for optimizing treatment strategies.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 4","pages":"1557-1568"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative assessment of thrombosis-induced blood oxygenation change in deep tissues based on photoacoustic tomography: an <i>ex vivo</i> study.\",\"authors\":\"Yingjie Feng, Qiuqin Mao, Lei Hong, Xiaotian Wang, Chao Tao, Xiaojun Liu\",\"doi\":\"10.1364/BOE.557086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The staging and classification of thrombosis hold significant clinical value for optimizing thrombus treatment strategies. In this study, we propose a quantitative method based on photoacoustic tomography for assessing thrombosis in deep tissues. By using inner chromophore signals as a correction factor, this approach minimizes the 'spectral coloring' effects caused by overlying heterogeneous tissues. <i>Ex vivo</i> experiments validate that the method acquires accurate spectra up to a depth of 30 mm across various tissue conditions. After calibration, the Pearson correlation coefficients calculated for the spectrum in deep tissue against the uncolored absorption spectrum is 15% higher, and the standard deviation of the Pearson correlation coefficients decreased by 58%. Sequential measurements capture time-dependent spectral changes of thrombus phantom during six days, providing a potential diagnostic reference for thrombus formation time and type. This method offers a non-invasive, practical tool for accurately quantifying thrombosis stages, which might be valuable for optimizing treatment strategies.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 4\",\"pages\":\"1557-1568\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.557086\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.557086","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Quantitative assessment of thrombosis-induced blood oxygenation change in deep tissues based on photoacoustic tomography: an ex vivo study.
The staging and classification of thrombosis hold significant clinical value for optimizing thrombus treatment strategies. In this study, we propose a quantitative method based on photoacoustic tomography for assessing thrombosis in deep tissues. By using inner chromophore signals as a correction factor, this approach minimizes the 'spectral coloring' effects caused by overlying heterogeneous tissues. Ex vivo experiments validate that the method acquires accurate spectra up to a depth of 30 mm across various tissue conditions. After calibration, the Pearson correlation coefficients calculated for the spectrum in deep tissue against the uncolored absorption spectrum is 15% higher, and the standard deviation of the Pearson correlation coefficients decreased by 58%. Sequential measurements capture time-dependent spectral changes of thrombus phantom during six days, providing a potential diagnostic reference for thrombus formation time and type. This method offers a non-invasive, practical tool for accurately quantifying thrombosis stages, which might be valuable for optimizing treatment strategies.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.