{"title":"胃癌前病变或胃癌患者血金属(样蛋白)暴露与糖代谢受损的相关影响","authors":"Yuting Zhu, Xiao Lin, Tingting Wang, Sheng Wang, Wuqi Wang, Mengran Ke, Yan Zhu, Bowen Zhang, Princess Ofosuhemaa, Yalei Wang, Mingjun Hu, Wanshui Yang, Anla Hu, Fen Huang, Qihong Zhao","doi":"10.1007/s10534-025-00684-8","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to metal(loid)s and glucose metabolism may influence the progression of gastric precancerous lesions (GPLs) or gastric cancer (GC), but their combined effects remain unclear. Our study aimed to elucidate the combined impact of metal (including metalloid and trace element) exposure and disturbances in glucose metabolism on the progression of GPLs and GC. From a prospective observational cohort of 1829 individuals, their metal(loid) levels and blood metabolism were analysed via inductively coupled plasma‒mass spectrometry and targeted metabolomics gas chromatography‒mass spectrometry, respectively. From healthy normal controls (NC) or GPLs to GC, we observed that the aluminum and arsenic levels decreased, whereas the vanadium, titanium and rubidium levels increased, but the iron, copper, zinc and barium levels initially decreased but then increased; these changes were not obvious from the NC to GPL group. With respect to glucose homeostasis, most metabolites decreased, except for phosphoenolpyruvate (PEP), which increased. Multiple logistic regression analysis revealed that titanium and phosphoenolpyruvate might be risk factors for GPLs, that barium is a protective factor for GC, and that D-glucaric acid might be a protective factor for GPLs and GC. Selenium, vanadium, titanium, succinate, maleate, isocitrate, PEP, and the tricarboxylic acid cycle (TCA) had good predictive potential for GPL and GC. Additionally, metal(loid)s such as arsenic, titanium, barium, aluminum, and vanadium were significantly correlated with multiple glucose metabolites involved in the TCA cycle in the GPL and GC groups. Our findings imply that metal(loid) exposure disrupts glucose metabolism, jointly influencing GPL and GC progression.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associated effects of blood metal(loid) exposure and impaired glucose metabolism in patients with gastric precancerous lesions or gastric cancer.\",\"authors\":\"Yuting Zhu, Xiao Lin, Tingting Wang, Sheng Wang, Wuqi Wang, Mengran Ke, Yan Zhu, Bowen Zhang, Princess Ofosuhemaa, Yalei Wang, Mingjun Hu, Wanshui Yang, Anla Hu, Fen Huang, Qihong Zhao\",\"doi\":\"10.1007/s10534-025-00684-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to metal(loid)s and glucose metabolism may influence the progression of gastric precancerous lesions (GPLs) or gastric cancer (GC), but their combined effects remain unclear. Our study aimed to elucidate the combined impact of metal (including metalloid and trace element) exposure and disturbances in glucose metabolism on the progression of GPLs and GC. From a prospective observational cohort of 1829 individuals, their metal(loid) levels and blood metabolism were analysed via inductively coupled plasma‒mass spectrometry and targeted metabolomics gas chromatography‒mass spectrometry, respectively. From healthy normal controls (NC) or GPLs to GC, we observed that the aluminum and arsenic levels decreased, whereas the vanadium, titanium and rubidium levels increased, but the iron, copper, zinc and barium levels initially decreased but then increased; these changes were not obvious from the NC to GPL group. With respect to glucose homeostasis, most metabolites decreased, except for phosphoenolpyruvate (PEP), which increased. Multiple logistic regression analysis revealed that titanium and phosphoenolpyruvate might be risk factors for GPLs, that barium is a protective factor for GC, and that D-glucaric acid might be a protective factor for GPLs and GC. Selenium, vanadium, titanium, succinate, maleate, isocitrate, PEP, and the tricarboxylic acid cycle (TCA) had good predictive potential for GPL and GC. Additionally, metal(loid)s such as arsenic, titanium, barium, aluminum, and vanadium were significantly correlated with multiple glucose metabolites involved in the TCA cycle in the GPL and GC groups. Our findings imply that metal(loid) exposure disrupts glucose metabolism, jointly influencing GPL and GC progression.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-025-00684-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00684-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Associated effects of blood metal(loid) exposure and impaired glucose metabolism in patients with gastric precancerous lesions or gastric cancer.
Exposure to metal(loid)s and glucose metabolism may influence the progression of gastric precancerous lesions (GPLs) or gastric cancer (GC), but their combined effects remain unclear. Our study aimed to elucidate the combined impact of metal (including metalloid and trace element) exposure and disturbances in glucose metabolism on the progression of GPLs and GC. From a prospective observational cohort of 1829 individuals, their metal(loid) levels and blood metabolism were analysed via inductively coupled plasma‒mass spectrometry and targeted metabolomics gas chromatography‒mass spectrometry, respectively. From healthy normal controls (NC) or GPLs to GC, we observed that the aluminum and arsenic levels decreased, whereas the vanadium, titanium and rubidium levels increased, but the iron, copper, zinc and barium levels initially decreased but then increased; these changes were not obvious from the NC to GPL group. With respect to glucose homeostasis, most metabolites decreased, except for phosphoenolpyruvate (PEP), which increased. Multiple logistic regression analysis revealed that titanium and phosphoenolpyruvate might be risk factors for GPLs, that barium is a protective factor for GC, and that D-glucaric acid might be a protective factor for GPLs and GC. Selenium, vanadium, titanium, succinate, maleate, isocitrate, PEP, and the tricarboxylic acid cycle (TCA) had good predictive potential for GPL and GC. Additionally, metal(loid)s such as arsenic, titanium, barium, aluminum, and vanadium were significantly correlated with multiple glucose metabolites involved in the TCA cycle in the GPL and GC groups. Our findings imply that metal(loid) exposure disrupts glucose metabolism, jointly influencing GPL and GC progression.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.