静态磁场中分子的相空间电子哈密顿量II:规范不变原子轨道的量子化学计算。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-05-22 Epub Date: 2025-05-12 DOI:10.1021/acs.jpca.4c07905
Mansi Bhati, Zhen Tao, Xuezhi Bian, Jonathan Rawlinson, Robert Littlejohn, Joseph E Subotnik
{"title":"静态磁场中分子的相空间电子哈密顿量II:规范不变原子轨道的量子化学计算。","authors":"Mansi Bhati, Zhen Tao, Xuezhi Bian, Jonathan Rawlinson, Robert Littlejohn, Joseph E Subotnik","doi":"10.1021/acs.jpca.4c07905","DOIUrl":null,"url":null,"abstract":"<p><p>In a companion paper, we have developed a phase-space electronic structure theory of molecules in magnetic fields, whereby the electronic energy levels arise from diagonalizing a phase-space Hamiltonian <i>Ĥ</i><sub>PS</sub>(<b>X</b>, <b>P</b>, <b>G</b>, <b>B</b>) that depends parametrically on nuclear position and momentum. The resulting eigenvalues are translationally invariant; moreover, if the magnetic field is in the <i>z</i>-direction, then the eigenvalues are also invariant to rotations around the <i>z</i>-direction. However, like all Hamiltonians in a magnetic field, the theory has a gauge degree of freedom (corresponding to the position of the magnetic origin in the vector potential), and requires either (i) formally, a complete set of electronic states or (ii) in practice, gauge-invariant atomic orbitals (GIAOs) in order to realize such translational and rotational invariance. Here we describe how to implement a phase-space electronic Hamiltonian using GIAOs within a practical electronic structure package (in our case, Q-Chem). We further show that novel phenomena can be observed with finite <b>B</b>-fields, including minimum energy structures with <b>Π</b><sub>min</sub> ≠ 0, indicating nonzero electronic motion in the ground-state.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"4573-4590"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Phase-Space Electronic Hamiltonian for Molecules in a Static Magnetic Field II: Quantum Chemistry Calculations with Gauge Invariant Atomic Orbitals.\",\"authors\":\"Mansi Bhati, Zhen Tao, Xuezhi Bian, Jonathan Rawlinson, Robert Littlejohn, Joseph E Subotnik\",\"doi\":\"10.1021/acs.jpca.4c07905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a companion paper, we have developed a phase-space electronic structure theory of molecules in magnetic fields, whereby the electronic energy levels arise from diagonalizing a phase-space Hamiltonian <i>Ĥ</i><sub>PS</sub>(<b>X</b>, <b>P</b>, <b>G</b>, <b>B</b>) that depends parametrically on nuclear position and momentum. The resulting eigenvalues are translationally invariant; moreover, if the magnetic field is in the <i>z</i>-direction, then the eigenvalues are also invariant to rotations around the <i>z</i>-direction. However, like all Hamiltonians in a magnetic field, the theory has a gauge degree of freedom (corresponding to the position of the magnetic origin in the vector potential), and requires either (i) formally, a complete set of electronic states or (ii) in practice, gauge-invariant atomic orbitals (GIAOs) in order to realize such translational and rotational invariance. Here we describe how to implement a phase-space electronic Hamiltonian using GIAOs within a practical electronic structure package (in our case, Q-Chem). We further show that novel phenomena can be observed with finite <b>B</b>-fields, including minimum energy structures with <b>Π</b><sub>min</sub> ≠ 0, indicating nonzero electronic motion in the ground-state.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"4573-4590\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c07905\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07905","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在另一篇论文中,我们开发了磁场中分子的相空间电子结构理论,其中电子能级来自于对角化相空间哈密顿量ĤPS(X, P, G, B),该哈密顿量参数化依赖于核位置和动量。得到的特征值是平移不变的;此外,如果磁场在z方向上,那么特征值对于绕z方向旋转也是不变的。然而,像磁场中的所有哈密顿量一样,该理论具有规范自由度(对应于磁原点在矢量势中的位置),并且需要(i)形式上的完整电子态集或(ii)在实践中,为了实现这种平移和旋转不变性,需要规范不变原子轨道(giao)。在这里,我们描述了如何在一个实用的电子结构包(在我们的例子中,Q-Chem)中使用giao实现相空间电子哈密顿量。我们进一步证明了在有限的b场中可以观察到新的现象,包括Πmin≠0的最小能量结构,表明基态中的非零电子运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Phase-Space Electronic Hamiltonian for Molecules in a Static Magnetic Field II: Quantum Chemistry Calculations with Gauge Invariant Atomic Orbitals.

In a companion paper, we have developed a phase-space electronic structure theory of molecules in magnetic fields, whereby the electronic energy levels arise from diagonalizing a phase-space Hamiltonian ĤPS(X, P, G, B) that depends parametrically on nuclear position and momentum. The resulting eigenvalues are translationally invariant; moreover, if the magnetic field is in the z-direction, then the eigenvalues are also invariant to rotations around the z-direction. However, like all Hamiltonians in a magnetic field, the theory has a gauge degree of freedom (corresponding to the position of the magnetic origin in the vector potential), and requires either (i) formally, a complete set of electronic states or (ii) in practice, gauge-invariant atomic orbitals (GIAOs) in order to realize such translational and rotational invariance. Here we describe how to implement a phase-space electronic Hamiltonian using GIAOs within a practical electronic structure package (in our case, Q-Chem). We further show that novel phenomena can be observed with finite B-fields, including minimum energy structures with Πmin ≠ 0, indicating nonzero electronic motion in the ground-state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信