设计肽类乙酰辅酶A合成酶2抑制剂的计算方法:抗癌发展的新视野。

IF 2.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Musab Ali, Ernest Oduro-Kwateng, Ibrahim Oluwatobi Kehinde, Narasimham L Parinandi, Mahmoud E S Soliman
{"title":"设计肽类乙酰辅酶A合成酶2抑制剂的计算方法:抗癌发展的新视野。","authors":"Musab Ali, Ernest Oduro-Kwateng, Ibrahim Oluwatobi Kehinde, Narasimham L Parinandi, Mahmoud E S Soliman","doi":"10.1007/s12013-025-01729-y","DOIUrl":null,"url":null,"abstract":"<p><p>Acetyl-CoA Synthetase 2 (ACSS2) has emerged as a new target for anticancer development owing to its high expression in various tumours and its enhancement of malignancy. Stressing the growing interest in peptide-derived drugs featuring better selectivity and efficacy, a computational protocol was applied to design a peptide inhibitor for ACSS2. Herein, 3600 peptide sequences derived from ACSS2 nucleotide motif were generated by classifying the 20 amino acids into six physiochemical groups. De novo modeling maintained essential binding interactions, and a refined library of 16 peptides was derived using Support Vector Machine filters to ensure proper bioavailability, toxicity, and therapeutic relevance. Structural and folding predictions, along with molecular docking, identified the top candidate, Pep16, which demonstrated significantly higher binding affinity (91.1 ± 1.6 kcal/mol) compared to a known inhibitor (53.7 ± 0.7 kcal/mol). Further molecular dynamics simulations and binding free energy calculations revealed that Pep16 enhances ACSS2 conformational variability, occupies a larger binding interface, and achieved firm binding. MM/GBSA analysis highlighted key electrostatic interactions with specific ACSS2 residues, including ARG 373, ARG 526, ARG 628, ARG 631, and LYS 632. Overall, Pep16 appears to lock the ACSS2 nucleotide pocket into a compact, rigid conformation, potentially blocking ATP binding and catalytic activity, and may serve as a novel specific ACSS2 inhibitor. Though, we urge further research to confirm and compare its therapeutic potential to existing inhibitors. We also believe that this systematic methodology would represent an indispensable tool for prospective peptide-based drug discovery.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Approach for Designing a Peptide-Based Acetyl-CoA Synthetase 2 Inhibitor: A New Horizon for Anticancer Development.\",\"authors\":\"Musab Ali, Ernest Oduro-Kwateng, Ibrahim Oluwatobi Kehinde, Narasimham L Parinandi, Mahmoud E S Soliman\",\"doi\":\"10.1007/s12013-025-01729-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acetyl-CoA Synthetase 2 (ACSS2) has emerged as a new target for anticancer development owing to its high expression in various tumours and its enhancement of malignancy. Stressing the growing interest in peptide-derived drugs featuring better selectivity and efficacy, a computational protocol was applied to design a peptide inhibitor for ACSS2. Herein, 3600 peptide sequences derived from ACSS2 nucleotide motif were generated by classifying the 20 amino acids into six physiochemical groups. De novo modeling maintained essential binding interactions, and a refined library of 16 peptides was derived using Support Vector Machine filters to ensure proper bioavailability, toxicity, and therapeutic relevance. Structural and folding predictions, along with molecular docking, identified the top candidate, Pep16, which demonstrated significantly higher binding affinity (91.1 ± 1.6 kcal/mol) compared to a known inhibitor (53.7 ± 0.7 kcal/mol). Further molecular dynamics simulations and binding free energy calculations revealed that Pep16 enhances ACSS2 conformational variability, occupies a larger binding interface, and achieved firm binding. MM/GBSA analysis highlighted key electrostatic interactions with specific ACSS2 residues, including ARG 373, ARG 526, ARG 628, ARG 631, and LYS 632. Overall, Pep16 appears to lock the ACSS2 nucleotide pocket into a compact, rigid conformation, potentially blocking ATP binding and catalytic activity, and may serve as a novel specific ACSS2 inhibitor. Though, we urge further research to confirm and compare its therapeutic potential to existing inhibitors. We also believe that this systematic methodology would represent an indispensable tool for prospective peptide-based drug discovery.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-025-01729-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01729-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乙酰辅酶a合成酶2 (Acetyl-CoA Synthetase 2, ACSS2)由于其在多种肿瘤中的高表达和对恶性肿瘤的增强作用而成为抗癌发展的新靶点。鉴于人们对具有更好选择性和有效性的肽衍生药物的兴趣日益浓厚,我们应用计算方案来设计ACSS2的肽抑制剂。本文将ACSS2核苷酸基序的20个氨基酸划分为6个理化基团,得到了3600个肽序列。从头建模维持了基本的结合相互作用,并使用支持向量机过滤器导出了16个肽的精炼库,以确保适当的生物利用度,毒性和治疗相关性。结构和折叠预测,以及分子对接,确定了最佳候选者Pep16,与已知抑制剂(53.7±0.7 kcal/mol)相比,它表现出更高的结合亲和力(91.1±1.6 kcal/mol)。进一步的分子动力学模拟和结合自由能计算表明,Pep16增强了ACSS2的构象变异性,占据了更大的结合界面,实现了牢固的结合。MM/GBSA分析强调了与特定ACSS2残基的关键静电相互作用,包括ARG 373、ARG 526、ARG 628、ARG 631和LYS 632。总的来说,Pep16似乎将ACSS2核苷酸袋锁定为紧凑的刚性构象,潜在地阻断ATP结合和催化活性,并可能作为一种新的特异性ACSS2抑制剂。尽管如此,我们敦促进一步的研究来确认并比较其与现有抑制剂的治疗潜力。我们也相信,这种系统的方法将代表一个不可缺少的工具,前瞻性肽类药物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Approach for Designing a Peptide-Based Acetyl-CoA Synthetase 2 Inhibitor: A New Horizon for Anticancer Development.

Acetyl-CoA Synthetase 2 (ACSS2) has emerged as a new target for anticancer development owing to its high expression in various tumours and its enhancement of malignancy. Stressing the growing interest in peptide-derived drugs featuring better selectivity and efficacy, a computational protocol was applied to design a peptide inhibitor for ACSS2. Herein, 3600 peptide sequences derived from ACSS2 nucleotide motif were generated by classifying the 20 amino acids into six physiochemical groups. De novo modeling maintained essential binding interactions, and a refined library of 16 peptides was derived using Support Vector Machine filters to ensure proper bioavailability, toxicity, and therapeutic relevance. Structural and folding predictions, along with molecular docking, identified the top candidate, Pep16, which demonstrated significantly higher binding affinity (91.1 ± 1.6 kcal/mol) compared to a known inhibitor (53.7 ± 0.7 kcal/mol). Further molecular dynamics simulations and binding free energy calculations revealed that Pep16 enhances ACSS2 conformational variability, occupies a larger binding interface, and achieved firm binding. MM/GBSA analysis highlighted key electrostatic interactions with specific ACSS2 residues, including ARG 373, ARG 526, ARG 628, ARG 631, and LYS 632. Overall, Pep16 appears to lock the ACSS2 nucleotide pocket into a compact, rigid conformation, potentially blocking ATP binding and catalytic activity, and may serve as a novel specific ACSS2 inhibitor. Though, we urge further research to confirm and compare its therapeutic potential to existing inhibitors. We also believe that this systematic methodology would represent an indispensable tool for prospective peptide-based drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信