{"title":"金纳米颗粒的可持续合成、表征、细胞效应及其在癌症治疗中的应用。","authors":"Youfeng Yue, Akihiro Moriyama, Marie Mita, Yue Yu","doi":"10.1002/cplu.202400783","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, gold nanoparticles (AuNPs) have attracted much attention due to their extensive applications in fields such as biomedicine, electronics, catalysis, and environmental science. However, traditional chemical methods for AuNPs synthesis present certain challenges, such as the use of harsh chemicals and high energy consumption. These limitations have led to the development of alternative, sustainable synthesis methods that are efficient, cost-effective, and environmentally friendly. These methods focus on the principle of green chemistry, utilizing renewable biomass sources (e.g., plant tissues, bacteria, fungi, and algae) and nontoxic solvents to minimize environmental impact. Biomolecules derived from biomass, such as polyphenols, proteins, and unsaturated fatty acids, enable the synthesis of AuNPs under mild and eco-friendly conditions. This review provides a comprehensive overview of recent advancements in the sustainable synthesis and applications of AuNPs. It summarizes the specific active compounds that drive the reduction and stabilization of AuNPs. It also explores the characterization techniques and underlying mechanisms involved in synthesis. Furthermore, their cellular effects and long-term safety are discussed, along with their extensive applications in biomedical fields, including bioimaging and cancer therapies. Finally, the potential of AuNPs is summarized, highlighting future perspectives as well as emerging opportunities and challenges in biological applications.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e2400783"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Synthesis, Characterization, Cellular Effects of Gold Nanoparticles and Their Applications as Therapeutics in Cancer Therapy.\",\"authors\":\"Youfeng Yue, Akihiro Moriyama, Marie Mita, Yue Yu\",\"doi\":\"10.1002/cplu.202400783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, gold nanoparticles (AuNPs) have attracted much attention due to their extensive applications in fields such as biomedicine, electronics, catalysis, and environmental science. However, traditional chemical methods for AuNPs synthesis present certain challenges, such as the use of harsh chemicals and high energy consumption. These limitations have led to the development of alternative, sustainable synthesis methods that are efficient, cost-effective, and environmentally friendly. These methods focus on the principle of green chemistry, utilizing renewable biomass sources (e.g., plant tissues, bacteria, fungi, and algae) and nontoxic solvents to minimize environmental impact. Biomolecules derived from biomass, such as polyphenols, proteins, and unsaturated fatty acids, enable the synthesis of AuNPs under mild and eco-friendly conditions. This review provides a comprehensive overview of recent advancements in the sustainable synthesis and applications of AuNPs. It summarizes the specific active compounds that drive the reduction and stabilization of AuNPs. It also explores the characterization techniques and underlying mechanisms involved in synthesis. Furthermore, their cellular effects and long-term safety are discussed, along with their extensive applications in biomedical fields, including bioimaging and cancer therapies. Finally, the potential of AuNPs is summarized, highlighting future perspectives as well as emerging opportunities and challenges in biological applications.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e2400783\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400783\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400783","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sustainable Synthesis, Characterization, Cellular Effects of Gold Nanoparticles and Their Applications as Therapeutics in Cancer Therapy.
In recent years, gold nanoparticles (AuNPs) have attracted much attention due to their extensive applications in fields such as biomedicine, electronics, catalysis, and environmental science. However, traditional chemical methods for AuNPs synthesis present certain challenges, such as the use of harsh chemicals and high energy consumption. These limitations have led to the development of alternative, sustainable synthesis methods that are efficient, cost-effective, and environmentally friendly. These methods focus on the principle of green chemistry, utilizing renewable biomass sources (e.g., plant tissues, bacteria, fungi, and algae) and nontoxic solvents to minimize environmental impact. Biomolecules derived from biomass, such as polyphenols, proteins, and unsaturated fatty acids, enable the synthesis of AuNPs under mild and eco-friendly conditions. This review provides a comprehensive overview of recent advancements in the sustainable synthesis and applications of AuNPs. It summarizes the specific active compounds that drive the reduction and stabilization of AuNPs. It also explores the characterization techniques and underlying mechanisms involved in synthesis. Furthermore, their cellular effects and long-term safety are discussed, along with their extensive applications in biomedical fields, including bioimaging and cancer therapies. Finally, the potential of AuNPs is summarized, highlighting future perspectives as well as emerging opportunities and challenges in biological applications.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.