Thomas Chaigneau, Sha Sha, Candice M Roux, Saba Aïd, Alice Faucher, Yannick Chantran, Guillaume Dorothée, Slavica Krantic
{"title":"在阿尔茨海默样病理症状前小鼠模型中,海马体神经元活动的细微改变与淀粉样变性和小胶质细胞的早期性别特异性差异一致。","authors":"Thomas Chaigneau, Sha Sha, Candice M Roux, Saba Aïd, Alice Faucher, Yannick Chantran, Guillaume Dorothée, Slavica Krantic","doi":"10.1002/glia.70029","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence highlights sex-related differences in the pathogenesis of Alzheimer's disease (AD). Yet, early impact of sex on neuronal activity and microglia in the hippocampus, a main site of memory formation and one of the most vulnerable brain areas in AD, remains poorly understood. We thus assessed these issues by using APPPS1 mouse model of AD-like amyloid pathology at a pre-symptomatic stage (5-6 months). Our electrophysiological data point to opposite alterations in hippocampal CA1 neurons' basal glutamatergic neurotransmission and response to excitatory inputs between male and female APPPS1 mice. These complex changes in neuronal activity are likely to precede plasticity impairments, which do not yet translate into sexual dimorphism of Long-Term Potentiation (LTP) at the studied age. Alteration in synaptic transmission in males coincides with an increased number and coverage of microglia, together with increased plaque coverage, as compared to the female hippocampus. Such increased microgliosis in males is accompanied by complex sex-related differences in the expression of specific transcriptomic markers Disease-Associated Microglia (DAM)/Microglial neurodegenerative phenotype (MGnD), whereas homeostatic (M0) markers were unaffected. Our data show for the first time that subtle alterations in hippocampal neuronal activity coincide with early sex-related differences in amyloidosis and microglia already at the pre-symptomatic stage of AD-like pathology.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subtle Alterations in Hippocampal Neuronal Activity Coincide With Early Sex-Specific Differences in Amyloidosis and Microglia in a Pre-Symptomatic Mouse Model of Alzheimer-Like Pathology.\",\"authors\":\"Thomas Chaigneau, Sha Sha, Candice M Roux, Saba Aïd, Alice Faucher, Yannick Chantran, Guillaume Dorothée, Slavica Krantic\",\"doi\":\"10.1002/glia.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growing evidence highlights sex-related differences in the pathogenesis of Alzheimer's disease (AD). Yet, early impact of sex on neuronal activity and microglia in the hippocampus, a main site of memory formation and one of the most vulnerable brain areas in AD, remains poorly understood. We thus assessed these issues by using APPPS1 mouse model of AD-like amyloid pathology at a pre-symptomatic stage (5-6 months). Our electrophysiological data point to opposite alterations in hippocampal CA1 neurons' basal glutamatergic neurotransmission and response to excitatory inputs between male and female APPPS1 mice. These complex changes in neuronal activity are likely to precede plasticity impairments, which do not yet translate into sexual dimorphism of Long-Term Potentiation (LTP) at the studied age. Alteration in synaptic transmission in males coincides with an increased number and coverage of microglia, together with increased plaque coverage, as compared to the female hippocampus. Such increased microgliosis in males is accompanied by complex sex-related differences in the expression of specific transcriptomic markers Disease-Associated Microglia (DAM)/Microglial neurodegenerative phenotype (MGnD), whereas homeostatic (M0) markers were unaffected. Our data show for the first time that subtle alterations in hippocampal neuronal activity coincide with early sex-related differences in amyloidosis and microglia already at the pre-symptomatic stage of AD-like pathology.</p>\",\"PeriodicalId\":174,\"journal\":{\"name\":\"Glia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/glia.70029\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/glia.70029","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Subtle Alterations in Hippocampal Neuronal Activity Coincide With Early Sex-Specific Differences in Amyloidosis and Microglia in a Pre-Symptomatic Mouse Model of Alzheimer-Like Pathology.
Growing evidence highlights sex-related differences in the pathogenesis of Alzheimer's disease (AD). Yet, early impact of sex on neuronal activity and microglia in the hippocampus, a main site of memory formation and one of the most vulnerable brain areas in AD, remains poorly understood. We thus assessed these issues by using APPPS1 mouse model of AD-like amyloid pathology at a pre-symptomatic stage (5-6 months). Our electrophysiological data point to opposite alterations in hippocampal CA1 neurons' basal glutamatergic neurotransmission and response to excitatory inputs between male and female APPPS1 mice. These complex changes in neuronal activity are likely to precede plasticity impairments, which do not yet translate into sexual dimorphism of Long-Term Potentiation (LTP) at the studied age. Alteration in synaptic transmission in males coincides with an increased number and coverage of microglia, together with increased plaque coverage, as compared to the female hippocampus. Such increased microgliosis in males is accompanied by complex sex-related differences in the expression of specific transcriptomic markers Disease-Associated Microglia (DAM)/Microglial neurodegenerative phenotype (MGnD), whereas homeostatic (M0) markers were unaffected. Our data show for the first time that subtle alterations in hippocampal neuronal activity coincide with early sex-related differences in amyloidosis and microglia already at the pre-symptomatic stage of AD-like pathology.
期刊介绍:
GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.