基于MS LOC平台的机器学习和唾液代谢指纹的快速无创肺癌早期检测:一项大规模的多中心研究

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuang Lin, Runlan Yan, Junqi Zhu, Bei Li, Yinyan Zhong, Shuang Han, Huiting Wang, Jianmin Wu, Zhao Chen, Yuyue Jiang, Aiwu Pan, Xuqing Huang, Xiaoming Chen, Pingya Zhu, Sheng Cao, Wenhua Liang, Peng Ye, Yue Gao
{"title":"基于MS LOC平台的机器学习和唾液代谢指纹的快速无创肺癌早期检测:一项大规模的多中心研究","authors":"Shuang Lin,&nbsp;Runlan Yan,&nbsp;Junqi Zhu,&nbsp;Bei Li,&nbsp;Yinyan Zhong,&nbsp;Shuang Han,&nbsp;Huiting Wang,&nbsp;Jianmin Wu,&nbsp;Zhao Chen,&nbsp;Yuyue Jiang,&nbsp;Aiwu Pan,&nbsp;Xuqing Huang,&nbsp;Xiaoming Chen,&nbsp;Pingya Zhu,&nbsp;Sheng Cao,&nbsp;Wenhua Liang,&nbsp;Peng Ye,&nbsp;Yue Gao","doi":"10.1002/advs.202416719","DOIUrl":null,"url":null,"abstract":"<p>Most lung cancer (LC) patients are diagnosed at advanced stages due to the lack of effective screening tools. This multicenter study analyzes 1043 saliva samples (334 LC cases and 709 non-LC cases) using a novel high-throughput platform for metabolic fingerprint acquisition. Machine learning identifies 35 metabolic features distinguishing LC from non-LC subjects, enabling the development of a classification model named SalivaMLD. In the validation set and test set, SalivaMLD demonstrates strong diagnostic performance, achieving an area under the curve of 0.849-0.850, a sensitivity of 81.69–83.33%, and a specificity of 74.23–74.39%, outperforming conventional tumor biomarkers. Notably, SalivaMLD exhibits superior accuracy in distinguishing early stage LC patients. Hence, this rapid and noninvasive screening method may be widely applied in clinical practice for LC detection.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 22","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202416719","citationCount":"0","resultStr":"{\"title\":\"Rapid and Noninvasive Early Detection of Lung Cancer by Integration of Machine Learning and Salivary Metabolic Fingerprints Using MS LOC Platform: A Large-Scale Multicenter Study\",\"authors\":\"Shuang Lin,&nbsp;Runlan Yan,&nbsp;Junqi Zhu,&nbsp;Bei Li,&nbsp;Yinyan Zhong,&nbsp;Shuang Han,&nbsp;Huiting Wang,&nbsp;Jianmin Wu,&nbsp;Zhao Chen,&nbsp;Yuyue Jiang,&nbsp;Aiwu Pan,&nbsp;Xuqing Huang,&nbsp;Xiaoming Chen,&nbsp;Pingya Zhu,&nbsp;Sheng Cao,&nbsp;Wenhua Liang,&nbsp;Peng Ye,&nbsp;Yue Gao\",\"doi\":\"10.1002/advs.202416719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most lung cancer (LC) patients are diagnosed at advanced stages due to the lack of effective screening tools. This multicenter study analyzes 1043 saliva samples (334 LC cases and 709 non-LC cases) using a novel high-throughput platform for metabolic fingerprint acquisition. Machine learning identifies 35 metabolic features distinguishing LC from non-LC subjects, enabling the development of a classification model named SalivaMLD. In the validation set and test set, SalivaMLD demonstrates strong diagnostic performance, achieving an area under the curve of 0.849-0.850, a sensitivity of 81.69–83.33%, and a specificity of 74.23–74.39%, outperforming conventional tumor biomarkers. Notably, SalivaMLD exhibits superior accuracy in distinguishing early stage LC patients. Hence, this rapid and noninvasive screening method may be widely applied in clinical practice for LC detection.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 22\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202416719\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202416719\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202416719","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏有效的筛查工具,大多数肺癌(LC)患者在晚期被诊断出来。本研究采用一种新型的高通量代谢指纹采集平台,对1043份唾液样本(334例LC病例和709例非LC病例)进行了分析。机器学习识别出35个代谢特征,将LC与非LC受试者区分开来,从而开发了一个名为SalivaMLD的分类模型。在验证集和测试集中,SalivaMLD表现出较强的诊断性能,曲线下面积为0.849-0.850,灵敏度为81.69-83.33%,特异性为74.23-74.39%,优于常规肿瘤生物标志物。值得注意的是,SalivaMLD在鉴别早期LC患者方面表现出更高的准确性。因此,这种快速、无创的筛查方法可广泛应用于临床LC检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid and Noninvasive Early Detection of Lung Cancer by Integration of Machine Learning and Salivary Metabolic Fingerprints Using MS LOC Platform: A Large-Scale Multicenter Study

Rapid and Noninvasive Early Detection of Lung Cancer by Integration of Machine Learning and Salivary Metabolic Fingerprints Using MS LOC Platform: A Large-Scale Multicenter Study

Most lung cancer (LC) patients are diagnosed at advanced stages due to the lack of effective screening tools. This multicenter study analyzes 1043 saliva samples (334 LC cases and 709 non-LC cases) using a novel high-throughput platform for metabolic fingerprint acquisition. Machine learning identifies 35 metabolic features distinguishing LC from non-LC subjects, enabling the development of a classification model named SalivaMLD. In the validation set and test set, SalivaMLD demonstrates strong diagnostic performance, achieving an area under the curve of 0.849-0.850, a sensitivity of 81.69–83.33%, and a specificity of 74.23–74.39%, outperforming conventional tumor biomarkers. Notably, SalivaMLD exhibits superior accuracy in distinguishing early stage LC patients. Hence, this rapid and noninvasive screening method may be widely applied in clinical practice for LC detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信