{"title":"红细胞膜伪装的黄腐酚纳米颗粒通过抑制铁下沉减轻阿霉素诱导的心脏毒性。","authors":"Jingchao Li, Yinghua Zeng, Fengjiao Liu, Xu Liao, Chongbin Zhong, Shujuan Dong, Yanbin Cai, Pingzhen Yang","doi":"10.1021/acsbiomaterials.4c02467","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) chemotherapy is a cornerstone of cancer treatment, but its clinical application and effectiveness are severely restricted due to its life-threatening cardiotoxicity. Xanthohumol (XH), a compound from traditional Chinese medicine, is noted for its antioxidant properties and the potential to mitigate DOX-induced cardiotoxicity (DIC). However, its poor water solubility results in low biocompatibility, making it susceptible to immune system clearance, which severely restricts its application in vivo. In this study, we first identified and demonstrated that XH can effectively mitigate DIC by inhibiting ferroptosis. We designed a biomimetic nanodelivery system encapsulating XH within porous poly(lactic-<i>co</i>-glycolic acid) (PLGA) nanoparticles, further coated with an erythrocyte membrane (XH-NPs@RBCm). This system offers several advantages, including evasion of macrophage phagocytosis and prolonged circulation time, thereby enhancing the stability and bioavailability of XH in vivo. Treatment with XH-NPs@RBCm significantly reduced reactive oxygen species-dependent ferroptosis, improving the DOX-induced myocardial atrophy and cardiac dysfunction. Our study underscores the therapeutic promise of XH-NPs@RBCm in treating DIC through ferroptosis inhibition, offering key insights into biomimetic nanodelivery system development for DIC management.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2727-2738"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erythrocyte Membrane-Camouflaged Xanthohumol Nanoparticles Mitigate Doxorubicin-Induced Cardiotoxicity by Inhibiting Ferroptosis.\",\"authors\":\"Jingchao Li, Yinghua Zeng, Fengjiao Liu, Xu Liao, Chongbin Zhong, Shujuan Dong, Yanbin Cai, Pingzhen Yang\",\"doi\":\"10.1021/acsbiomaterials.4c02467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin (DOX) chemotherapy is a cornerstone of cancer treatment, but its clinical application and effectiveness are severely restricted due to its life-threatening cardiotoxicity. Xanthohumol (XH), a compound from traditional Chinese medicine, is noted for its antioxidant properties and the potential to mitigate DOX-induced cardiotoxicity (DIC). However, its poor water solubility results in low biocompatibility, making it susceptible to immune system clearance, which severely restricts its application in vivo. In this study, we first identified and demonstrated that XH can effectively mitigate DIC by inhibiting ferroptosis. We designed a biomimetic nanodelivery system encapsulating XH within porous poly(lactic-<i>co</i>-glycolic acid) (PLGA) nanoparticles, further coated with an erythrocyte membrane (XH-NPs@RBCm). This system offers several advantages, including evasion of macrophage phagocytosis and prolonged circulation time, thereby enhancing the stability and bioavailability of XH in vivo. Treatment with XH-NPs@RBCm significantly reduced reactive oxygen species-dependent ferroptosis, improving the DOX-induced myocardial atrophy and cardiac dysfunction. Our study underscores the therapeutic promise of XH-NPs@RBCm in treating DIC through ferroptosis inhibition, offering key insights into biomimetic nanodelivery system development for DIC management.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 5\",\"pages\":\"2727-2738\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c02467\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02467","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Erythrocyte Membrane-Camouflaged Xanthohumol Nanoparticles Mitigate Doxorubicin-Induced Cardiotoxicity by Inhibiting Ferroptosis.
Doxorubicin (DOX) chemotherapy is a cornerstone of cancer treatment, but its clinical application and effectiveness are severely restricted due to its life-threatening cardiotoxicity. Xanthohumol (XH), a compound from traditional Chinese medicine, is noted for its antioxidant properties and the potential to mitigate DOX-induced cardiotoxicity (DIC). However, its poor water solubility results in low biocompatibility, making it susceptible to immune system clearance, which severely restricts its application in vivo. In this study, we first identified and demonstrated that XH can effectively mitigate DIC by inhibiting ferroptosis. We designed a biomimetic nanodelivery system encapsulating XH within porous poly(lactic-co-glycolic acid) (PLGA) nanoparticles, further coated with an erythrocyte membrane (XH-NPs@RBCm). This system offers several advantages, including evasion of macrophage phagocytosis and prolonged circulation time, thereby enhancing the stability and bioavailability of XH in vivo. Treatment with XH-NPs@RBCm significantly reduced reactive oxygen species-dependent ferroptosis, improving the DOX-induced myocardial atrophy and cardiac dysfunction. Our study underscores the therapeutic promise of XH-NPs@RBCm in treating DIC through ferroptosis inhibition, offering key insights into biomimetic nanodelivery system development for DIC management.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture