宽带隙钙钛矿和串联太阳能电池的协同双分子侵蚀愈合界面钝化。

IF 18.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shiqiang Fu, Guang Li, Shun Zhou, Jiahao Wang, Dexin Pu, Lishuai Huang, Zhiqiu Yu, Wanping Chen, Guojia Fang, Weijun Ke
{"title":"宽带隙钙钛矿和串联太阳能电池的协同双分子侵蚀愈合界面钝化。","authors":"Shiqiang Fu, Guang Li, Shun Zhou, Jiahao Wang, Dexin Pu, Lishuai Huang, Zhiqiu Yu, Wanping Chen, Guojia Fang, Weijun Ke","doi":"10.1016/j.scib.2025.04.017","DOIUrl":null,"url":null,"abstract":"<p><p>All-perovskite tandem solar cells present immense potential due to their exceptional performance and versatility. However, their practical implementation is impeded by significant challenges, particularly in large-area devices, where interfacial inhomogeneities in wide-bandgap (WBG) perovskite subcells lead to high open-circuit voltage losses and low fill factors. Here, we introduce a synergistic bimolecular corroding-healing passivation strategy to enhance WBG perovskite films' passivation and interfacial uniformity. Unlike conventional passivation methods relying on halide ammonium salts, this approach directly employs precursor diamines to passivate interfacial defects, suppress recombination, and crucially induce mild surface corrosion, creating random openings on the perovskite surface. Paired molecules of piperazinium iodide then penetrate these openings, enabling deeper defect passivation and surface healing to form a smooth, homogeneous interface. This strategy enabled 1.78 eV WBG perovskite solar cells to achieve a power conversion efficiency (PCE) of 20.47% with an ultrahigh fill factor of 85.10%. Furthermore, when integrated with narrow-bandgap perovskite subcells, the fabricated all-perovskite tandem solar cells delivered PCEs of 28.36% (0.07 cm<sup>2</sup>) and 27.52% (1.02 cm<sup>2</sup>). This dual-molecular erosion-healing passivation strategy offers an effective and scalable solution to optimize the perovskite interface, driving advancements in the performance and manufacturability of WBG perovskite and tandem solar cells.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic bimolecular erosion-healing interfacial passivation for wide-bandgap perovskite and tandem solar cells.\",\"authors\":\"Shiqiang Fu, Guang Li, Shun Zhou, Jiahao Wang, Dexin Pu, Lishuai Huang, Zhiqiu Yu, Wanping Chen, Guojia Fang, Weijun Ke\",\"doi\":\"10.1016/j.scib.2025.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All-perovskite tandem solar cells present immense potential due to their exceptional performance and versatility. However, their practical implementation is impeded by significant challenges, particularly in large-area devices, where interfacial inhomogeneities in wide-bandgap (WBG) perovskite subcells lead to high open-circuit voltage losses and low fill factors. Here, we introduce a synergistic bimolecular corroding-healing passivation strategy to enhance WBG perovskite films' passivation and interfacial uniformity. Unlike conventional passivation methods relying on halide ammonium salts, this approach directly employs precursor diamines to passivate interfacial defects, suppress recombination, and crucially induce mild surface corrosion, creating random openings on the perovskite surface. Paired molecules of piperazinium iodide then penetrate these openings, enabling deeper defect passivation and surface healing to form a smooth, homogeneous interface. This strategy enabled 1.78 eV WBG perovskite solar cells to achieve a power conversion efficiency (PCE) of 20.47% with an ultrahigh fill factor of 85.10%. Furthermore, when integrated with narrow-bandgap perovskite subcells, the fabricated all-perovskite tandem solar cells delivered PCEs of 28.36% (0.07 cm<sup>2</sup>) and 27.52% (1.02 cm<sup>2</sup>). This dual-molecular erosion-healing passivation strategy offers an effective and scalable solution to optimize the perovskite interface, driving advancements in the performance and manufacturability of WBG perovskite and tandem solar cells.</p>\",\"PeriodicalId\":421,\"journal\":{\"name\":\"Science Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Bulletin\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scib.2025.04.017\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.04.017","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全钙钛矿串联太阳能电池由于其优异的性能和多功能性而呈现出巨大的潜力。然而,它们的实际实施受到重大挑战的阻碍,特别是在大面积器件中,宽带隙(WBG)钙钛矿亚电池的界面不均匀性导致高开路电压损失和低填充因子。本文介绍了一种双分子协同腐蚀-愈合钝化策略,以提高WBG钙钛矿膜的钝化性能和界面均匀性。与依赖卤化物铵盐的传统钝化方法不同,该方法直接使用前体二胺来钝化界面缺陷,抑制复合,并诱导轻微的表面腐蚀,在钙钛矿表面产生随机开口。然后,配对的碘化哌嗪分子穿透这些开口,实现更深的缺陷钝化和表面愈合,形成光滑、均匀的界面。该策略使1.78 eV WBG钙钛矿太阳能电池实现了20.47%的功率转换效率(PCE)和85.10%的超高填充系数。此外,当与窄带隙钙钛矿亚电池集成时,制备的全钙钛矿串联太阳能电池的pce分别为28.36% (0.07 cm2)和27.52% (1.02 cm2)。这种双分子侵蚀愈合钝化策略为优化钙钛矿界面提供了一种有效且可扩展的解决方案,推动了WBG钙钛矿和串联太阳能电池的性能和可制造性的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic bimolecular erosion-healing interfacial passivation for wide-bandgap perovskite and tandem solar cells.

All-perovskite tandem solar cells present immense potential due to their exceptional performance and versatility. However, their practical implementation is impeded by significant challenges, particularly in large-area devices, where interfacial inhomogeneities in wide-bandgap (WBG) perovskite subcells lead to high open-circuit voltage losses and low fill factors. Here, we introduce a synergistic bimolecular corroding-healing passivation strategy to enhance WBG perovskite films' passivation and interfacial uniformity. Unlike conventional passivation methods relying on halide ammonium salts, this approach directly employs precursor diamines to passivate interfacial defects, suppress recombination, and crucially induce mild surface corrosion, creating random openings on the perovskite surface. Paired molecules of piperazinium iodide then penetrate these openings, enabling deeper defect passivation and surface healing to form a smooth, homogeneous interface. This strategy enabled 1.78 eV WBG perovskite solar cells to achieve a power conversion efficiency (PCE) of 20.47% with an ultrahigh fill factor of 85.10%. Furthermore, when integrated with narrow-bandgap perovskite subcells, the fabricated all-perovskite tandem solar cells delivered PCEs of 28.36% (0.07 cm2) and 27.52% (1.02 cm2). This dual-molecular erosion-healing passivation strategy offers an effective and scalable solution to optimize the perovskite interface, driving advancements in the performance and manufacturability of WBG perovskite and tandem solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信