用于气态碘捕获的晶体多孔材料:综述。

IF 3 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xiaofang Yang, Zhongyue Li, Mei Yang
{"title":"用于气态碘捕获的晶体多孔材料:综述。","authors":"Xiaofang Yang, Zhongyue Li, Mei Yang","doi":"10.1002/cplu.202500087","DOIUrl":null,"url":null,"abstract":"<p><p>The growing reliance on nuclear energy necessitates efficient strategies for managing spent nuclear fuel, particularly the capture of volatile radioactive iodine, which poses significant environmental and health risks. Crystalline porous materials have emerged as promising candidates for iodine adsorption due to their high surface areas, tunable porosity, and abundant active sites. This review comprehensively summarizes recent advancements in the design and application of four classes of crystalline porous materials for iodine capture: metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages. The discussion focuses on key adsorption mechanisms, structural modifications, and functionalization strategies that enhance iodine adsorption capacity, retention, and recyclability. While significant progress has been made, challenges remain in scaling up synthesis, improving stability under industrial conditions, and achieving cost-effective large-scale applications. Future research should emphasize on scalable synthesis, industrial validation, and development of multifunctional adsorbents with enhanced selectivity and reusability. This review provides insights into the rational design of next-generation porous materials for efficient iodine capture, contributing to advancements in nuclear waste management and environmental sustainability.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e2500087"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystalline Porous Materials for Gaseous Iodine Capture: A Comprehensive Review.\",\"authors\":\"Xiaofang Yang, Zhongyue Li, Mei Yang\",\"doi\":\"10.1002/cplu.202500087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing reliance on nuclear energy necessitates efficient strategies for managing spent nuclear fuel, particularly the capture of volatile radioactive iodine, which poses significant environmental and health risks. Crystalline porous materials have emerged as promising candidates for iodine adsorption due to their high surface areas, tunable porosity, and abundant active sites. This review comprehensively summarizes recent advancements in the design and application of four classes of crystalline porous materials for iodine capture: metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages. The discussion focuses on key adsorption mechanisms, structural modifications, and functionalization strategies that enhance iodine adsorption capacity, retention, and recyclability. While significant progress has been made, challenges remain in scaling up synthesis, improving stability under industrial conditions, and achieving cost-effective large-scale applications. Future research should emphasize on scalable synthesis, industrial validation, and development of multifunctional adsorbents with enhanced selectivity and reusability. This review provides insights into the rational design of next-generation porous materials for efficient iodine capture, contributing to advancements in nuclear waste management and environmental sustainability.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e2500087\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202500087\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202500087","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对核能的日益依赖需要有效的战略来管理用过的核燃料,特别是捕获挥发性放射性碘,这对环境和健康构成重大风险。晶体多孔材料由于其高表面积、可调孔隙度和丰富的活性位点而成为碘吸附的有希望的候选者。本文综述了金属有机骨架、共价有机骨架、氢键有机骨架和多孔有机笼四类晶体多孔材料的设计和应用的最新进展。讨论的重点是关键的吸附机制、结构修饰和功能化策略,以提高碘的吸附能力、保留率和可回收性。虽然取得了重大进展,但在扩大合成规模、提高工业条件下的稳定性以及实现经济高效的大规模应用方面仍然存在挑战。未来的研究应侧重于规模化合成、工业验证和开发具有更高选择性和可重复使用的多功能吸附剂。本文综述了新一代高效碘捕获多孔材料的合理设计,有助于提高核废料管理和环境可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystalline Porous Materials for Gaseous Iodine Capture: A Comprehensive Review.

The growing reliance on nuclear energy necessitates efficient strategies for managing spent nuclear fuel, particularly the capture of volatile radioactive iodine, which poses significant environmental and health risks. Crystalline porous materials have emerged as promising candidates for iodine adsorption due to their high surface areas, tunable porosity, and abundant active sites. This review comprehensively summarizes recent advancements in the design and application of four classes of crystalline porous materials for iodine capture: metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages. The discussion focuses on key adsorption mechanisms, structural modifications, and functionalization strategies that enhance iodine adsorption capacity, retention, and recyclability. While significant progress has been made, challenges remain in scaling up synthesis, improving stability under industrial conditions, and achieving cost-effective large-scale applications. Future research should emphasize on scalable synthesis, industrial validation, and development of multifunctional adsorbents with enhanced selectivity and reusability. This review provides insights into the rational design of next-generation porous materials for efficient iodine capture, contributing to advancements in nuclear waste management and environmental sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信