超声辐照和磁场靶向作用下的Fe3O4/MnCO3微泡高效去除细菌生物膜

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Lihui Yuwen, Yuan Liu, Fengjiao Xu, Chi Zhang, Xiaolong Chen, Zhaowei Yin, Bin Liang and Lianhui Wang
{"title":"超声辐照和磁场靶向作用下的Fe3O4/MnCO3微泡高效去除细菌生物膜","authors":"Lihui Yuwen, Yuan Liu, Fengjiao Xu, Chi Zhang, Xiaolong Chen, Zhaowei Yin, Bin Liang and Lianhui Wang","doi":"10.1039/D5BM00227C","DOIUrl":null,"url":null,"abstract":"<p >Bacterial biofilms present significant challenges in treatment with traditional antibiotics. Ultrasound (US)-responsive antibacterial agents have emerged as promising alternatives for treating bacterial biofilm infections. However, these agents are often limited by antibiotic dependence, inadequate targeting, and low antibacterial efficacy. Herein, we develop Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>/MnCO<small><sub>3</sub></small> microbubbles (FMMB) by self-assembly of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles (Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> NPs) and MnCO<small><sub>3</sub></small> nanoparticles (MnCO<small><sub>3</sub></small> NPs). Under the direction of the magnetic field (MF), FMMB can be directed toward the methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) biofilm. Under US irradiation, FMMB can disrupt the structure of MRSA biofilms by cavitation-induced mechanical effects and kill bacteria with reactive oxygen species (ROS) generated by MnCO<small><sub>3</sub></small> NPs through the sonodynamic effect. In a mouse model with catheter-associated MRSA biofilm infection, FMMB removed 58.8% of the biofilm with MF and US, and the bacterial inactivation efficiency reached as high as 4.1 log (99.992%). This work develops multifunctional microbubbles with both US-responsive mechanical and sonodynamic effects for biofilm disruption and MF-responsive properties for biofilm targeting, offering a promising strategy for designing antibiofilm agents to effectively treat bacterial biofilm infections.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 12","pages":" 3367-3379"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe3O4/MnCO3 microbubbles for efficient elimination of bacterial biofilms by mechanical/sonodynamic effects under ultrasound irradiation and magnetic field targeting†\",\"authors\":\"Lihui Yuwen, Yuan Liu, Fengjiao Xu, Chi Zhang, Xiaolong Chen, Zhaowei Yin, Bin Liang and Lianhui Wang\",\"doi\":\"10.1039/D5BM00227C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bacterial biofilms present significant challenges in treatment with traditional antibiotics. Ultrasound (US)-responsive antibacterial agents have emerged as promising alternatives for treating bacterial biofilm infections. However, these agents are often limited by antibiotic dependence, inadequate targeting, and low antibacterial efficacy. Herein, we develop Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>/MnCO<small><sub>3</sub></small> microbubbles (FMMB) by self-assembly of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles (Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> NPs) and MnCO<small><sub>3</sub></small> nanoparticles (MnCO<small><sub>3</sub></small> NPs). Under the direction of the magnetic field (MF), FMMB can be directed toward the methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) biofilm. Under US irradiation, FMMB can disrupt the structure of MRSA biofilms by cavitation-induced mechanical effects and kill bacteria with reactive oxygen species (ROS) generated by MnCO<small><sub>3</sub></small> NPs through the sonodynamic effect. In a mouse model with catheter-associated MRSA biofilm infection, FMMB removed 58.8% of the biofilm with MF and US, and the bacterial inactivation efficiency reached as high as 4.1 log (99.992%). This work develops multifunctional microbubbles with both US-responsive mechanical and sonodynamic effects for biofilm disruption and MF-responsive properties for biofilm targeting, offering a promising strategy for designing antibiofilm agents to effectively treat bacterial biofilm infections.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 12\",\"pages\":\" 3367-3379\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00227c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00227c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

细菌生物膜对传统抗生素的治疗提出了重大挑战。超声(US)反应性抗菌剂已成为治疗细菌生物膜感染的有希望的替代品。然而,这些药物往往受到抗生素依赖性、靶向性不足和抗菌效果低的限制。本文通过Fe3O4纳米粒子(Fe3O4 NPs)和MnCO3纳米粒子(MnCO3 NPs)的自组装,制备了Fe3O4/MnCO3微泡(FMMB)。在磁场(MF)的引导下,FMMB可以定向到耐甲氧西林金黄色葡萄球菌(MRSA)生物膜上。在US照射下,FMMB可以通过空化诱导的机械效应破坏MRSA生物膜的结构,并通过声动力效应利用MnCO3 NPs产生的活性氧(ROS)杀死细菌。在导管相关性MRSA生物膜感染小鼠模型中,FMMB对MF和US的生物膜去除率为58.8%,细菌灭活效率高达4.1 log(99.992%)。这项工作开发了多功能微泡,具有生物膜破坏的us响应力学和声动力效应,以及生物膜靶向的mf响应特性,为设计有效治疗细菌生物膜感染的抗生物膜剂提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fe3O4/MnCO3 microbubbles for efficient elimination of bacterial biofilms by mechanical/sonodynamic effects under ultrasound irradiation and magnetic field targeting†

Bacterial biofilms present significant challenges in treatment with traditional antibiotics. Ultrasound (US)-responsive antibacterial agents have emerged as promising alternatives for treating bacterial biofilm infections. However, these agents are often limited by antibiotic dependence, inadequate targeting, and low antibacterial efficacy. Herein, we develop Fe3O4/MnCO3 microbubbles (FMMB) by self-assembly of Fe3O4 nanoparticles (Fe3O4 NPs) and MnCO3 nanoparticles (MnCO3 NPs). Under the direction of the magnetic field (MF), FMMB can be directed toward the methicillin-resistant Staphylococcus aureus (MRSA) biofilm. Under US irradiation, FMMB can disrupt the structure of MRSA biofilms by cavitation-induced mechanical effects and kill bacteria with reactive oxygen species (ROS) generated by MnCO3 NPs through the sonodynamic effect. In a mouse model with catheter-associated MRSA biofilm infection, FMMB removed 58.8% of the biofilm with MF and US, and the bacterial inactivation efficiency reached as high as 4.1 log (99.992%). This work develops multifunctional microbubbles with both US-responsive mechanical and sonodynamic effects for biofilm disruption and MF-responsive properties for biofilm targeting, offering a promising strategy for designing antibiofilm agents to effectively treat bacterial biofilm infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信