多环烃系列的递推方程和杜瓦长键共振结构的数目及其应用。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-05-15 Epub Date: 2025-05-01 DOI:10.1021/acs.jpca.5c01651
Jerry Ray Dias
{"title":"多环烃系列的递推方程和杜瓦长键共振结构的数目及其应用。","authors":"Jerry Ray Dias","doi":"10.1021/acs.jpca.5c01651","DOIUrl":null,"url":null,"abstract":"<p><p>Basic recursion equations for characteristic and matching polynomials and the number of Dewar resonance structures for polycyclic polyene series are derived. Fibonacci-like series of numbers frequently appear in recursion and analytical expressions for determining resonance energy terms for polycyclic polyene series successively built up by given Aufbau units. Linear polycyclic polyene series built up from given Aufbau units usually give analytical expressions for determining their resonance energy terms. Polycyclic polyene series with all fixed pπ bonds (<b><i>K</i></b> = 1) have some aromatic stabilization energy as measured by topological resonance energy (TRE), which is explained by the appearance of sextet and larger aromatic circuits in some of their Dewar resonance structures (<i>DS</i>); note that <i>DS</i> can be read as singular (Dewar structure) or plural (Dewar structures) depending on the context. It is demonstrated that a finer evaluation of relative resonance energy and aromaticity requires the inclusion of both Dewar structures (<i>DS</i>) and Kekulé structures (<b><i>K</i></b>). In the valence-bond determination of bond lengths and aromaticity of polycyclic conjugated systems with fixed single and double bonds, the inclusion of Dewar resonance structures is required. Topological conjugation energy (TCE) for all series, whether they have all fixed pπ double bonds (<b><i>K</i></b> = 1) or numerous Kekulé resonance structures (<b><i>K</i></b> > 1), is very similar.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"4234-4244"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursion Equations in Polycyclic Hydrocarbon Series and the Number of Dewar Long-Bond Resonance Structures with Applications.\",\"authors\":\"Jerry Ray Dias\",\"doi\":\"10.1021/acs.jpca.5c01651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Basic recursion equations for characteristic and matching polynomials and the number of Dewar resonance structures for polycyclic polyene series are derived. Fibonacci-like series of numbers frequently appear in recursion and analytical expressions for determining resonance energy terms for polycyclic polyene series successively built up by given Aufbau units. Linear polycyclic polyene series built up from given Aufbau units usually give analytical expressions for determining their resonance energy terms. Polycyclic polyene series with all fixed pπ bonds (<b><i>K</i></b> = 1) have some aromatic stabilization energy as measured by topological resonance energy (TRE), which is explained by the appearance of sextet and larger aromatic circuits in some of their Dewar resonance structures (<i>DS</i>); note that <i>DS</i> can be read as singular (Dewar structure) or plural (Dewar structures) depending on the context. It is demonstrated that a finer evaluation of relative resonance energy and aromaticity requires the inclusion of both Dewar structures (<i>DS</i>) and Kekulé structures (<b><i>K</i></b>). In the valence-bond determination of bond lengths and aromaticity of polycyclic conjugated systems with fixed single and double bonds, the inclusion of Dewar resonance structures is required. Topological conjugation energy (TCE) for all series, whether they have all fixed pπ double bonds (<b><i>K</i></b> = 1) or numerous Kekulé resonance structures (<b><i>K</i></b> > 1), is very similar.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"4234-4244\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.5c01651\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c01651","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

推导了多环多烯系特征多项式和匹配多项式的基本递推方程以及杜瓦共振结构的个数。类斐波那契数列经常出现在递归表达式和解析表达式中,用于确定由给定Aufbau单元连续构建的多环多烯序列的共振能项。由给定的Aufbau单元构成的线性多环多烯系通常给出确定其共振能项的解析表达式。pπ键(K = 1)均固定的多环多烯系列具有一定的芳香稳定能(拓扑共振能),这是由于其杜瓦共振结构(DS)中出现六方体和较大的芳香电路所致;请注意,根据上下文,DS可以读作单数(杜瓦结构)或复数(杜瓦结构)。结果表明,为了更好地评价相对共振能和芳香性,需要同时包含杜瓦结构(DS)和凯库尔结构(K)。在具有固定单键和双键的多环共轭体系的键长和芳香性的价键测定中,需要包含杜瓦共振结构。所有系列的拓扑共轭能(TCE),无论是具有全部固定的π双键(K = 1),还是具有众多的kekul共振结构(K > 1),都是非常相似的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursion Equations in Polycyclic Hydrocarbon Series and the Number of Dewar Long-Bond Resonance Structures with Applications.

Basic recursion equations for characteristic and matching polynomials and the number of Dewar resonance structures for polycyclic polyene series are derived. Fibonacci-like series of numbers frequently appear in recursion and analytical expressions for determining resonance energy terms for polycyclic polyene series successively built up by given Aufbau units. Linear polycyclic polyene series built up from given Aufbau units usually give analytical expressions for determining their resonance energy terms. Polycyclic polyene series with all fixed pπ bonds (K = 1) have some aromatic stabilization energy as measured by topological resonance energy (TRE), which is explained by the appearance of sextet and larger aromatic circuits in some of their Dewar resonance structures (DS); note that DS can be read as singular (Dewar structure) or plural (Dewar structures) depending on the context. It is demonstrated that a finer evaluation of relative resonance energy and aromaticity requires the inclusion of both Dewar structures (DS) and Kekulé structures (K). In the valence-bond determination of bond lengths and aromaticity of polycyclic conjugated systems with fixed single and double bonds, the inclusion of Dewar resonance structures is required. Topological conjugation energy (TCE) for all series, whether they have all fixed pπ double bonds (K = 1) or numerous Kekulé resonance structures (K > 1), is very similar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信