{"title":"凝血酶二价DNA适体的抗血栓作用。","authors":"Yanxi Chen, Shoubo Xiang, Chunfa Chen, Qiuyu Su, Zhe Zhang, Yangyang Fan, Zhihong Cui, Lixue Yin, Hua Zuo, Mingliang Zuo","doi":"10.1021/acsbiomaterials.5c00222","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombin plays a critical role in both coagulation and platelet activation, and its interaction with thrombin-protease-activated receptor 1 (PAR1) on platelets and vascular smooth muscle cells (VSMCs) leads to a series of pathological processes such as thrombosis, restenosis, and atherosclerosis. This study investigated the antithrombotic properties of a bivalent DNA aptamer (bApt) with phosphorothioate backbone modification designed to inhibit thrombin, with a specific focus on its ability to regulate the thrombin-PAR1 signaling pathway. The results showed that bApt modulated the thrombin-PAR1 pathway, effectively reduced thrombus formation, platelet aggregation, and VSMC proliferation. Key findings from the study highlight that bApt successfully prolonged coagulation reaction time (<i>R</i> value), coagulation time (<i>K</i> value), maximum amplitude (MA) and reduced coagulation angle (α value), and also prolonged thrombin time (TT) and activated partial thromboplastin time (APTT), in a dose-dependent manner. Moreover, in an arterial injury model, bApt reduced thrombus formation significantly, supporting its potential as a therapeutic agent for thrombotic diseases.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2705-2712"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antithrombotic Effect of a Bivalent DNA Aptamer of Thrombin.\",\"authors\":\"Yanxi Chen, Shoubo Xiang, Chunfa Chen, Qiuyu Su, Zhe Zhang, Yangyang Fan, Zhihong Cui, Lixue Yin, Hua Zuo, Mingliang Zuo\",\"doi\":\"10.1021/acsbiomaterials.5c00222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thrombin plays a critical role in both coagulation and platelet activation, and its interaction with thrombin-protease-activated receptor 1 (PAR1) on platelets and vascular smooth muscle cells (VSMCs) leads to a series of pathological processes such as thrombosis, restenosis, and atherosclerosis. This study investigated the antithrombotic properties of a bivalent DNA aptamer (bApt) with phosphorothioate backbone modification designed to inhibit thrombin, with a specific focus on its ability to regulate the thrombin-PAR1 signaling pathway. The results showed that bApt modulated the thrombin-PAR1 pathway, effectively reduced thrombus formation, platelet aggregation, and VSMC proliferation. Key findings from the study highlight that bApt successfully prolonged coagulation reaction time (<i>R</i> value), coagulation time (<i>K</i> value), maximum amplitude (MA) and reduced coagulation angle (α value), and also prolonged thrombin time (TT) and activated partial thromboplastin time (APTT), in a dose-dependent manner. Moreover, in an arterial injury model, bApt reduced thrombus formation significantly, supporting its potential as a therapeutic agent for thrombotic diseases.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 5\",\"pages\":\"2705-2712\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00222\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Antithrombotic Effect of a Bivalent DNA Aptamer of Thrombin.
Thrombin plays a critical role in both coagulation and platelet activation, and its interaction with thrombin-protease-activated receptor 1 (PAR1) on platelets and vascular smooth muscle cells (VSMCs) leads to a series of pathological processes such as thrombosis, restenosis, and atherosclerosis. This study investigated the antithrombotic properties of a bivalent DNA aptamer (bApt) with phosphorothioate backbone modification designed to inhibit thrombin, with a specific focus on its ability to regulate the thrombin-PAR1 signaling pathway. The results showed that bApt modulated the thrombin-PAR1 pathway, effectively reduced thrombus formation, platelet aggregation, and VSMC proliferation. Key findings from the study highlight that bApt successfully prolonged coagulation reaction time (R value), coagulation time (K value), maximum amplitude (MA) and reduced coagulation angle (α value), and also prolonged thrombin time (TT) and activated partial thromboplastin time (APTT), in a dose-dependent manner. Moreover, in an arterial injury model, bApt reduced thrombus formation significantly, supporting its potential as a therapeutic agent for thrombotic diseases.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture