{"title":"甘蔗副产品和工业废水的有效开发与战略能源应用——以微生物燃料电池为例的最新进展和方法综述","authors":"Babu Indira Bijimol, Liju Elias, Bhuvanendran Revamma Sreelekshmy, Sheik Muhammadhu Aboobakar Shibli","doi":"10.1021/acsabm.5c00239","DOIUrl":null,"url":null,"abstract":"<p><p>Apart from its role in agriculture, the contribution of the sugarcane industry and its related sectors toward the global economy is seemingly great. Hence, it is imperative to adopt the maximum possible ways to completely recover the stored chemical energy in sugarcane to generate additional revenue and thereby to ensure the sustainability of sugarcane-related industries by surmounting the regional/seasonal limitations associated with sugarcane cultivation. So, the present Review aims to highlight the importance of sugarcane crops in the global economy by comprehensively discussing the energy value of byproducts and industrial waste generated during the processing of sugarcane. The various possible strategies reported so far for the effective recovery of bioenergy from sugarcane components are discussed with a special emphasis on technologies capable of converting the stored chemical energy into electrical energy or fuel. As the fraction of waste components generated during the harvesting or processing of sugarcane is high, the bioenergy recovery strategies standing close to the \"waste-to-energy\" concept are the most rewarding ones, suitable for complete bioenergy recovery. Hence, the microbial fuel cell (MFC) technology that offers dual benefits in terms of waste management and power generation is receiving much attention. The status of technological developments in MFCs and the possibilities for developing hybrid technologies through their integration with existing sugar industry waste processing strategies, to further enhance the effective exploitation of the energy value of sugarcane byproducts, are discussed rigorously by focusing on their commercialization possibilities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"3657-3690"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Exploitation of Sugarcane Byproducts and Industrial Effluents for Strategic Energy Applications: A Review on Recent Developments and Approaches with Special Reference to Microbial Fuel Cells.\",\"authors\":\"Babu Indira Bijimol, Liju Elias, Bhuvanendran Revamma Sreelekshmy, Sheik Muhammadhu Aboobakar Shibli\",\"doi\":\"10.1021/acsabm.5c00239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apart from its role in agriculture, the contribution of the sugarcane industry and its related sectors toward the global economy is seemingly great. Hence, it is imperative to adopt the maximum possible ways to completely recover the stored chemical energy in sugarcane to generate additional revenue and thereby to ensure the sustainability of sugarcane-related industries by surmounting the regional/seasonal limitations associated with sugarcane cultivation. So, the present Review aims to highlight the importance of sugarcane crops in the global economy by comprehensively discussing the energy value of byproducts and industrial waste generated during the processing of sugarcane. The various possible strategies reported so far for the effective recovery of bioenergy from sugarcane components are discussed with a special emphasis on technologies capable of converting the stored chemical energy into electrical energy or fuel. As the fraction of waste components generated during the harvesting or processing of sugarcane is high, the bioenergy recovery strategies standing close to the \\\"waste-to-energy\\\" concept are the most rewarding ones, suitable for complete bioenergy recovery. Hence, the microbial fuel cell (MFC) technology that offers dual benefits in terms of waste management and power generation is receiving much attention. The status of technological developments in MFCs and the possibilities for developing hybrid technologies through their integration with existing sugar industry waste processing strategies, to further enhance the effective exploitation of the energy value of sugarcane byproducts, are discussed rigorously by focusing on their commercialization possibilities.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"3657-3690\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effective Exploitation of Sugarcane Byproducts and Industrial Effluents for Strategic Energy Applications: A Review on Recent Developments and Approaches with Special Reference to Microbial Fuel Cells.
Apart from its role in agriculture, the contribution of the sugarcane industry and its related sectors toward the global economy is seemingly great. Hence, it is imperative to adopt the maximum possible ways to completely recover the stored chemical energy in sugarcane to generate additional revenue and thereby to ensure the sustainability of sugarcane-related industries by surmounting the regional/seasonal limitations associated with sugarcane cultivation. So, the present Review aims to highlight the importance of sugarcane crops in the global economy by comprehensively discussing the energy value of byproducts and industrial waste generated during the processing of sugarcane. The various possible strategies reported so far for the effective recovery of bioenergy from sugarcane components are discussed with a special emphasis on technologies capable of converting the stored chemical energy into electrical energy or fuel. As the fraction of waste components generated during the harvesting or processing of sugarcane is high, the bioenergy recovery strategies standing close to the "waste-to-energy" concept are the most rewarding ones, suitable for complete bioenergy recovery. Hence, the microbial fuel cell (MFC) technology that offers dual benefits in terms of waste management and power generation is receiving much attention. The status of technological developments in MFCs and the possibilities for developing hybrid technologies through their integration with existing sugar industry waste processing strategies, to further enhance the effective exploitation of the energy value of sugarcane byproducts, are discussed rigorously by focusing on their commercialization possibilities.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.