Mikala C Mueller, Rachel Blomberg, Alicia E Tanneberger, Duncan Davis-Hall, Keith B Neeves, Chelsea M Magin
{"title":"性别特异性3d生物打印肺动脉外膜模型中雌性成纤维细胞激活是雌激素介导的。","authors":"Mikala C Mueller, Rachel Blomberg, Alicia E Tanneberger, Duncan Davis-Hall, Keith B Neeves, Chelsea M Magin","doi":"10.1021/acsbiomaterials.5c00123","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a form of pulmonary vascular disease characterized by scarring of the small blood vessels that results in reduced blood flow and increased blood pressure in the lungs. Over time, this increase in blood pressure causes damage to the heart. Idiopathic (IPAH) impacts male and female patients differently, with female patients showing a higher disease susceptibility (4:1 female-to-male ratio) but experiencing longer survival rates postdiagnosis compared to male patients. This complex sex dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex differences in IPAH remain unclear. Many previous studies of PAH relied on male cells or cells of undisclosed origin for <i>in vitro</i> modeling. Here, we present a dynamic, three-dimensional (3D)-bioprinted model incorporating cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling on the cellular level. Poly(ethylene glycol)-α methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from IPAH or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator, which is currently in clinical trials for IPAH treatment, reduced the expression of hPAAF activation markers, demonstrating that hPAAF activation is one pathologic response mediated by estrogen signaling in the vasculature. These results showed the utility of sex-specific, 3D-bioprinted pulmonary artery adventitia models for preclinical drug discovery and validation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2935-2945"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models.\",\"authors\":\"Mikala C Mueller, Rachel Blomberg, Alicia E Tanneberger, Duncan Davis-Hall, Keith B Neeves, Chelsea M Magin\",\"doi\":\"10.1021/acsbiomaterials.5c00123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary arterial hypertension (PAH) is a form of pulmonary vascular disease characterized by scarring of the small blood vessels that results in reduced blood flow and increased blood pressure in the lungs. Over time, this increase in blood pressure causes damage to the heart. Idiopathic (IPAH) impacts male and female patients differently, with female patients showing a higher disease susceptibility (4:1 female-to-male ratio) but experiencing longer survival rates postdiagnosis compared to male patients. This complex sex dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex differences in IPAH remain unclear. Many previous studies of PAH relied on male cells or cells of undisclosed origin for <i>in vitro</i> modeling. Here, we present a dynamic, three-dimensional (3D)-bioprinted model incorporating cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling on the cellular level. Poly(ethylene glycol)-α methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from IPAH or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator, which is currently in clinical trials for IPAH treatment, reduced the expression of hPAAF activation markers, demonstrating that hPAAF activation is one pathologic response mediated by estrogen signaling in the vasculature. These results showed the utility of sex-specific, 3D-bioprinted pulmonary artery adventitia models for preclinical drug discovery and validation.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 5\",\"pages\":\"2935-2945\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00123\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00123","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models.
Pulmonary arterial hypertension (PAH) is a form of pulmonary vascular disease characterized by scarring of the small blood vessels that results in reduced blood flow and increased blood pressure in the lungs. Over time, this increase in blood pressure causes damage to the heart. Idiopathic (IPAH) impacts male and female patients differently, with female patients showing a higher disease susceptibility (4:1 female-to-male ratio) but experiencing longer survival rates postdiagnosis compared to male patients. This complex sex dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex differences in IPAH remain unclear. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here, we present a dynamic, three-dimensional (3D)-bioprinted model incorporating cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling on the cellular level. Poly(ethylene glycol)-α methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from IPAH or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator, which is currently in clinical trials for IPAH treatment, reduced the expression of hPAAF activation markers, demonstrating that hPAAF activation is one pathologic response mediated by estrogen signaling in the vasculature. These results showed the utility of sex-specific, 3D-bioprinted pulmonary artery adventitia models for preclinical drug discovery and validation.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture