Liora Jacobs Catane, Erez Asher, Reuven Reich, Tali Tavor Re'em
{"title":"用于胚胎着床研究的生物打印人子宫内膜激素反应双层模型。","authors":"Liora Jacobs Catane, Erez Asher, Reuven Reich, Tali Tavor Re'em","doi":"10.1021/acsbiomaterials.4c02473","DOIUrl":null,"url":null,"abstract":"<p><p>Implantation failure is a major challenge in reproductive medicine, with two-thirds of cases attributed to poor uterine receptivity. Current models have limited utility in capturing the complexities of the endometrium. This study introduces a novel bioprinted endometrial model with epithelial and stromal cells in a bilayer structure, designed to replicate the hormone-regulated endometrial environment and support embryo implantation studies. Alginate-based bioink formulations, cross-linked with calcium chloride or calcium gluconate, were optimized for 3D cell bioprinting, based on key parameters: reduced spreading ratio, lower printed line width standard deviation (SD), slower degradation rates, and enhanced cell viability. Human endometrial epithelial (RL95-2) and stromal (T HESCs) cell lines were encapsulated in the bioink and bioprinted in a bilayer structure: Clear stratification mimicking the layered architecture of native endometrium was confirmed using fluorescent microscopy. Sequential hormonal treatments with estradiol (proliferative phase), followed by estradiol and progesterone (secretory phase) highlighted the model's hormone-responsiveness. Estradiol significantly enhanced cell viability by day 2, while progesterone reduced cell viability by day 5, consistent with adaptation to the proliferative and secretory phases. Hormone-treated constructs displayed significantly lower E-cadherin expression, higher mRNA expression of various integrins and of vascular endothelial growth factor (VEGF), and reduced metalloproteinase (MMP)-2 secretion after 5 days, mirroring in vivo endometrial remodeling under progesterone influence. JAR spheroids, representing human blastocyst cells, adhered to and infiltrated the epithelial layer of the hormone-treated, bilayered model, effectively simulating embryo implantation. This bioprinted bilayer endometrial model represents a significant advancement in reproductive biology. It offers a platform for studying in vitro endometrial receptivity and implantation and paves the way for personalized treatment approaches in recurrent implantation failure.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2922-2934"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioprinted Hormone-Responsive Bilayer Model of Human Endometrium for Embryo Implantation Studies.\",\"authors\":\"Liora Jacobs Catane, Erez Asher, Reuven Reich, Tali Tavor Re'em\",\"doi\":\"10.1021/acsbiomaterials.4c02473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Implantation failure is a major challenge in reproductive medicine, with two-thirds of cases attributed to poor uterine receptivity. Current models have limited utility in capturing the complexities of the endometrium. This study introduces a novel bioprinted endometrial model with epithelial and stromal cells in a bilayer structure, designed to replicate the hormone-regulated endometrial environment and support embryo implantation studies. Alginate-based bioink formulations, cross-linked with calcium chloride or calcium gluconate, were optimized for 3D cell bioprinting, based on key parameters: reduced spreading ratio, lower printed line width standard deviation (SD), slower degradation rates, and enhanced cell viability. Human endometrial epithelial (RL95-2) and stromal (T HESCs) cell lines were encapsulated in the bioink and bioprinted in a bilayer structure: Clear stratification mimicking the layered architecture of native endometrium was confirmed using fluorescent microscopy. Sequential hormonal treatments with estradiol (proliferative phase), followed by estradiol and progesterone (secretory phase) highlighted the model's hormone-responsiveness. Estradiol significantly enhanced cell viability by day 2, while progesterone reduced cell viability by day 5, consistent with adaptation to the proliferative and secretory phases. Hormone-treated constructs displayed significantly lower E-cadherin expression, higher mRNA expression of various integrins and of vascular endothelial growth factor (VEGF), and reduced metalloproteinase (MMP)-2 secretion after 5 days, mirroring in vivo endometrial remodeling under progesterone influence. JAR spheroids, representing human blastocyst cells, adhered to and infiltrated the epithelial layer of the hormone-treated, bilayered model, effectively simulating embryo implantation. This bioprinted bilayer endometrial model represents a significant advancement in reproductive biology. It offers a platform for studying in vitro endometrial receptivity and implantation and paves the way for personalized treatment approaches in recurrent implantation failure.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 5\",\"pages\":\"2922-2934\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c02473\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Bioprinted Hormone-Responsive Bilayer Model of Human Endometrium for Embryo Implantation Studies.
Implantation failure is a major challenge in reproductive medicine, with two-thirds of cases attributed to poor uterine receptivity. Current models have limited utility in capturing the complexities of the endometrium. This study introduces a novel bioprinted endometrial model with epithelial and stromal cells in a bilayer structure, designed to replicate the hormone-regulated endometrial environment and support embryo implantation studies. Alginate-based bioink formulations, cross-linked with calcium chloride or calcium gluconate, were optimized for 3D cell bioprinting, based on key parameters: reduced spreading ratio, lower printed line width standard deviation (SD), slower degradation rates, and enhanced cell viability. Human endometrial epithelial (RL95-2) and stromal (T HESCs) cell lines were encapsulated in the bioink and bioprinted in a bilayer structure: Clear stratification mimicking the layered architecture of native endometrium was confirmed using fluorescent microscopy. Sequential hormonal treatments with estradiol (proliferative phase), followed by estradiol and progesterone (secretory phase) highlighted the model's hormone-responsiveness. Estradiol significantly enhanced cell viability by day 2, while progesterone reduced cell viability by day 5, consistent with adaptation to the proliferative and secretory phases. Hormone-treated constructs displayed significantly lower E-cadherin expression, higher mRNA expression of various integrins and of vascular endothelial growth factor (VEGF), and reduced metalloproteinase (MMP)-2 secretion after 5 days, mirroring in vivo endometrial remodeling under progesterone influence. JAR spheroids, representing human blastocyst cells, adhered to and infiltrated the epithelial layer of the hormone-treated, bilayered model, effectively simulating embryo implantation. This bioprinted bilayer endometrial model represents a significant advancement in reproductive biology. It offers a platform for studying in vitro endometrial receptivity and implantation and paves the way for personalized treatment approaches in recurrent implantation failure.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture