Esteban Gazel, Kyle Dayton, Wenwei Liang, Junlin Hua, Kendra J. Lynn, Julia E. Hammer
{"title":"夏威夷火山演化过程中地壳到地幔的融水储存","authors":"Esteban Gazel, Kyle Dayton, Wenwei Liang, Junlin Hua, Kendra J. Lynn, Julia E. Hammer","doi":"10.1126/sciadv.adu9332","DOIUrl":null,"url":null,"abstract":"<div >As the Pacific Plate migrates over the mantle plume below Hawaiʻi, magma flux decreases, resulting in changes in eruptive volume, style, and composition. It is thought that melt storage becomes deeper and ephemeral with the transition from highly voluminous tholeiitic (shield stage) to the less voluminous alkaline (post-shield and rejuvenation stages) magmatism. To quantitatively test this, we applied high-precision fluid inclusion barometry via Raman spectroscopy to samples from representative volcanoes of different evolutionary stages. This suggests an evolution from shield-stage shallow magma storage (~1 to 2 kilometers) for Kīlauea to a post-shield stage that includes crustal magma storage within the volcanic edifice (~2 kilometers) and deeper storage below the Moho (~20 to 27 kilometers) for Haleakalā. The rejuvenation stage (Diamond Head) displays mantle-dominated storage (~22 to 30 kilometers). High melt fluxes likely form stable conduits from the mantle to a shallow reservoir in the shield volcanoes. As melt flux decreases, the Moho becomes the boundary controlling melt stagnation and evolution.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu9332","citationCount":"0","resultStr":"{\"title\":\"Crustal to mantle melt storage during the evolution of Hawaiian volcanoes\",\"authors\":\"Esteban Gazel, Kyle Dayton, Wenwei Liang, Junlin Hua, Kendra J. Lynn, Julia E. Hammer\",\"doi\":\"10.1126/sciadv.adu9332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >As the Pacific Plate migrates over the mantle plume below Hawaiʻi, magma flux decreases, resulting in changes in eruptive volume, style, and composition. It is thought that melt storage becomes deeper and ephemeral with the transition from highly voluminous tholeiitic (shield stage) to the less voluminous alkaline (post-shield and rejuvenation stages) magmatism. To quantitatively test this, we applied high-precision fluid inclusion barometry via Raman spectroscopy to samples from representative volcanoes of different evolutionary stages. This suggests an evolution from shield-stage shallow magma storage (~1 to 2 kilometers) for Kīlauea to a post-shield stage that includes crustal magma storage within the volcanic edifice (~2 kilometers) and deeper storage below the Moho (~20 to 27 kilometers) for Haleakalā. The rejuvenation stage (Diamond Head) displays mantle-dominated storage (~22 to 30 kilometers). High melt fluxes likely form stable conduits from the mantle to a shallow reservoir in the shield volcanoes. As melt flux decreases, the Moho becomes the boundary controlling melt stagnation and evolution.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu9332\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu9332\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu9332","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Crustal to mantle melt storage during the evolution of Hawaiian volcanoes
As the Pacific Plate migrates over the mantle plume below Hawaiʻi, magma flux decreases, resulting in changes in eruptive volume, style, and composition. It is thought that melt storage becomes deeper and ephemeral with the transition from highly voluminous tholeiitic (shield stage) to the less voluminous alkaline (post-shield and rejuvenation stages) magmatism. To quantitatively test this, we applied high-precision fluid inclusion barometry via Raman spectroscopy to samples from representative volcanoes of different evolutionary stages. This suggests an evolution from shield-stage shallow magma storage (~1 to 2 kilometers) for Kīlauea to a post-shield stage that includes crustal magma storage within the volcanic edifice (~2 kilometers) and deeper storage below the Moho (~20 to 27 kilometers) for Haleakalā. The rejuvenation stage (Diamond Head) displays mantle-dominated storage (~22 to 30 kilometers). High melt fluxes likely form stable conduits from the mantle to a shallow reservoir in the shield volcanoes. As melt flux decreases, the Moho becomes the boundary controlling melt stagnation and evolution.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.