Ivan Stepanov, Noah R. Gottshall, Alireza Ahmadianyazdi, Daksh Sinha, Ethan J. Lockhart, Tran N. H. Nguyen, Sarmad Hassan, Lisa F. Horowitz, Raymond S. Yeung, Taranjit S. Gujral, Albert Folch
{"title":"用于癌症药物测试的活体显微组织的低成本机器人操作","authors":"Ivan Stepanov, Noah R. Gottshall, Alireza Ahmadianyazdi, Daksh Sinha, Ethan J. Lockhart, Tran N. H. Nguyen, Sarmad Hassan, Lisa F. Horowitz, Raymond S. Yeung, Taranjit S. Gujral, Albert Folch","doi":"10.1126/sciadv.ads1631","DOIUrl":null,"url":null,"abstract":"<div >The scarcity of human biopsies available for drug testing is a paramount challenge for developing therapeutics, disease models, and personalized treatments. Microtechnologies that combine the microscale manipulation of tissues and fluids offer the exciting possibility of miniaturizing both disease models and drug testing workflows on scarce human biopsies. Unfortunately, these technologies presently require microfluidic devices or robotic dispensers that are not widely accessible. We have rapidly prototyped an inexpensive platform based on an off-the-shelf robot that can microfluidically manipulate live microtissues into/out of culture plates without using complicated accessories such as microscopes or pneumatic controllers. The robot integrates complex functions with a simple, cost-effective, and compact construction, allowing placement inside a tissue culture hood for sterile workflows. We demonstrated a proof-of-concept cancer drug evaluation workflow of potential clinical utility using patient tumor biopsies with multiple drugs on 384-well plates. Our user-friendly, low-cost platform promises to make drug testing of microtissues broadly accessible to pharmaceutical, clinical, and biological laboratories.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads1631","citationCount":"0","resultStr":"{\"title\":\"Low-cost robotic manipulation of live microtissues for cancer drug testing\",\"authors\":\"Ivan Stepanov, Noah R. Gottshall, Alireza Ahmadianyazdi, Daksh Sinha, Ethan J. Lockhart, Tran N. H. Nguyen, Sarmad Hassan, Lisa F. Horowitz, Raymond S. Yeung, Taranjit S. Gujral, Albert Folch\",\"doi\":\"10.1126/sciadv.ads1631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The scarcity of human biopsies available for drug testing is a paramount challenge for developing therapeutics, disease models, and personalized treatments. Microtechnologies that combine the microscale manipulation of tissues and fluids offer the exciting possibility of miniaturizing both disease models and drug testing workflows on scarce human biopsies. Unfortunately, these technologies presently require microfluidic devices or robotic dispensers that are not widely accessible. We have rapidly prototyped an inexpensive platform based on an off-the-shelf robot that can microfluidically manipulate live microtissues into/out of culture plates without using complicated accessories such as microscopes or pneumatic controllers. The robot integrates complex functions with a simple, cost-effective, and compact construction, allowing placement inside a tissue culture hood for sterile workflows. We demonstrated a proof-of-concept cancer drug evaluation workflow of potential clinical utility using patient tumor biopsies with multiple drugs on 384-well plates. Our user-friendly, low-cost platform promises to make drug testing of microtissues broadly accessible to pharmaceutical, clinical, and biological laboratories.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads1631\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads1631\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads1631","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Low-cost robotic manipulation of live microtissues for cancer drug testing
The scarcity of human biopsies available for drug testing is a paramount challenge for developing therapeutics, disease models, and personalized treatments. Microtechnologies that combine the microscale manipulation of tissues and fluids offer the exciting possibility of miniaturizing both disease models and drug testing workflows on scarce human biopsies. Unfortunately, these technologies presently require microfluidic devices or robotic dispensers that are not widely accessible. We have rapidly prototyped an inexpensive platform based on an off-the-shelf robot that can microfluidically manipulate live microtissues into/out of culture plates without using complicated accessories such as microscopes or pneumatic controllers. The robot integrates complex functions with a simple, cost-effective, and compact construction, allowing placement inside a tissue culture hood for sterile workflows. We demonstrated a proof-of-concept cancer drug evaluation workflow of potential clinical utility using patient tumor biopsies with multiple drugs on 384-well plates. Our user-friendly, low-cost platform promises to make drug testing of microtissues broadly accessible to pharmaceutical, clinical, and biological laboratories.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.