可伸缩贝叶斯地震小波估计

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Guillermina Senn, Matthew Walker, Håkon Tjelmeland
{"title":"可伸缩贝叶斯地震小波估计","authors":"Guillermina Senn,&nbsp;Matthew Walker,&nbsp;Håkon Tjelmeland","doi":"10.1111/1365-2478.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In seismic amplitude-versus-angle data, the forward model connecting the elastic properties with the data involves the convolution of seismic reflection coefficients with a wavelet. If the wavelet is erroneously specified, the modelled seismic will be biased and associated seismic inversion results will be difficult to trust. Therefore, it is of interest to estimate the wavelet from the observations, prior to the seismic inversion. An existing Bayesian estimation procedure proposes a Bayesian model for the problem and explores the posterior distribution with a Gibbs sampler algorithm. However, the algorithmic complexity scales non-linearly with the number of observations, thus limiting input data to elastic well-log data and seismic data at the well. We adopt a similar hierarchical Bayesian model but introduce a computationally efficient Gibbs sampler to allow estimation from large two-dimensional seismic images. The efficiency is obtained by embedding the seismic image in an extended cyclic lattice so that large matrices acquire circulant properties and expensive matrix operations can be done with the fast Fourier transform. We include results for simulated datasets and a real dataset from an offshore gas reservoir in Egypt.</p></div>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 5","pages":"1635-1650"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Bayesian seismic wavelet estimation\",\"authors\":\"Guillermina Senn,&nbsp;Matthew Walker,&nbsp;Håkon Tjelmeland\",\"doi\":\"10.1111/1365-2478.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In seismic amplitude-versus-angle data, the forward model connecting the elastic properties with the data involves the convolution of seismic reflection coefficients with a wavelet. If the wavelet is erroneously specified, the modelled seismic will be biased and associated seismic inversion results will be difficult to trust. Therefore, it is of interest to estimate the wavelet from the observations, prior to the seismic inversion. An existing Bayesian estimation procedure proposes a Bayesian model for the problem and explores the posterior distribution with a Gibbs sampler algorithm. However, the algorithmic complexity scales non-linearly with the number of observations, thus limiting input data to elastic well-log data and seismic data at the well. We adopt a similar hierarchical Bayesian model but introduce a computationally efficient Gibbs sampler to allow estimation from large two-dimensional seismic images. The efficiency is obtained by embedding the seismic image in an extended cyclic lattice so that large matrices acquire circulant properties and expensive matrix operations can be done with the fast Fourier transform. We include results for simulated datasets and a real dataset from an offshore gas reservoir in Egypt.</p></div>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"73 5\",\"pages\":\"1635-1650\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70026\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70026","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在地震振幅-角度数据中,将弹性性质与数据联系起来的正演模型涉及地震反射系数与小波的卷积。如果小波指定错误,则模拟地震将有偏差,相关的地震反演结果将难以信任。因此,在地震反演之前,从观测中估计小波是很有意义的。现有的贝叶斯估计方法对该问题提出了贝叶斯模型,并用Gibbs采样器算法研究了后验分布。然而,算法复杂度随着观测数据的数量呈非线性增长,因此将输入数据限制为弹性测井数据和井内地震数据。我们采用了类似的分层贝叶斯模型,但引入了计算效率高的吉布斯采样器,以便从大型二维地震图像中进行估计。通过将地震图像嵌入到扩展的循环晶格中,使得大矩阵具有循环性质,并且可以使用快速傅里叶变换完成昂贵的矩阵运算,从而提高了效率。我们包括模拟数据集的结果和来自埃及海上天然气储层的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Bayesian seismic wavelet estimation

In seismic amplitude-versus-angle data, the forward model connecting the elastic properties with the data involves the convolution of seismic reflection coefficients with a wavelet. If the wavelet is erroneously specified, the modelled seismic will be biased and associated seismic inversion results will be difficult to trust. Therefore, it is of interest to estimate the wavelet from the observations, prior to the seismic inversion. An existing Bayesian estimation procedure proposes a Bayesian model for the problem and explores the posterior distribution with a Gibbs sampler algorithm. However, the algorithmic complexity scales non-linearly with the number of observations, thus limiting input data to elastic well-log data and seismic data at the well. We adopt a similar hierarchical Bayesian model but introduce a computationally efficient Gibbs sampler to allow estimation from large two-dimensional seismic images. The efficiency is obtained by embedding the seismic image in an extended cyclic lattice so that large matrices acquire circulant properties and expensive matrix operations can be done with the fast Fourier transform. We include results for simulated datasets and a real dataset from an offshore gas reservoir in Egypt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信