基于差分演化的共偏移共反射面正则化方法:以陆上地震数据为例

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Tainá Souza, Tiago Barros, Renato Lopes
{"title":"基于差分演化的共偏移共反射面正则化方法:以陆上地震数据为例","authors":"Tainá Souza,&nbsp;Tiago Barros,&nbsp;Renato Lopes","doi":"10.1111/1365-2478.70007","DOIUrl":null,"url":null,"abstract":"<p>We introduce a novel approach for seismic pre-stack data regularization using the common-offset common-reflection-surface method with a global attribute search strategy, employing a bio-inspired differential evolution optimization algorithm. We compare the global common-offset common-reflection-surface approach with the conventional sequential attribute search, focusing on their performance in pre-stack data regularization. Tests on synthetic and onshore (field) seismic datasets demonstrate that the global search approach significantly improves performance, enhancing signal-to-noise ratio and coherently filling missing traces. We show that the global common-offset common-reflection-surface method effectively addresses spatial irregularities, reconstructing reflections without artefacts, filling data gaps and highlighting geological details even in complex areas. In contrast, the sequential common-offset common-reflection-surface method, while capable of reconstructing missing traces, shows lower interpolation quality and fails to adequately highlight complex geological features such as high-dip reflections.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 5","pages":"1411-1430"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization with differential evolution-based common-offset common-reflection surface: A case study for field onshore seismic data\",\"authors\":\"Tainá Souza,&nbsp;Tiago Barros,&nbsp;Renato Lopes\",\"doi\":\"10.1111/1365-2478.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a novel approach for seismic pre-stack data regularization using the common-offset common-reflection-surface method with a global attribute search strategy, employing a bio-inspired differential evolution optimization algorithm. We compare the global common-offset common-reflection-surface approach with the conventional sequential attribute search, focusing on their performance in pre-stack data regularization. Tests on synthetic and onshore (field) seismic datasets demonstrate that the global search approach significantly improves performance, enhancing signal-to-noise ratio and coherently filling missing traces. We show that the global common-offset common-reflection-surface method effectively addresses spatial irregularities, reconstructing reflections without artefacts, filling data gaps and highlighting geological details even in complex areas. In contrast, the sequential common-offset common-reflection-surface method, while capable of reconstructing missing traces, shows lower interpolation quality and fails to adequately highlight complex geological features such as high-dip reflections.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"73 5\",\"pages\":\"1411-1430\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70007\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70007","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的地震叠前数据正则化方法,采用全局属性搜索策略的共偏移共反射面方法,采用生物差分进化优化算法。将全局共偏移共反射面方法与传统的顺序属性搜索方法进行了比较,重点研究了它们在叠前数据正则化中的性能。对合成和陆上(现场)地震数据集的测试表明,全局搜索方法显著提高了性能,提高了信噪比,并相干地填充了缺失的轨迹。我们表明,全球共偏移共反射面方法有效地解决了空间不规则性,重建无人工反射,填补数据空白,即使在复杂地区也能突出地质细节。相比而言,序贯共偏移共反射面法虽然能够重建缺失的轨迹,但插值质量较低,不能充分突出高倾角反射等复杂地质特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularization with differential evolution-based common-offset common-reflection surface: A case study for field onshore seismic data

We introduce a novel approach for seismic pre-stack data regularization using the common-offset common-reflection-surface method with a global attribute search strategy, employing a bio-inspired differential evolution optimization algorithm. We compare the global common-offset common-reflection-surface approach with the conventional sequential attribute search, focusing on their performance in pre-stack data regularization. Tests on synthetic and onshore (field) seismic datasets demonstrate that the global search approach significantly improves performance, enhancing signal-to-noise ratio and coherently filling missing traces. We show that the global common-offset common-reflection-surface method effectively addresses spatial irregularities, reconstructing reflections without artefacts, filling data gaps and highlighting geological details even in complex areas. In contrast, the sequential common-offset common-reflection-surface method, while capable of reconstructing missing traces, shows lower interpolation quality and fails to adequately highlight complex geological features such as high-dip reflections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信