AutoMine:用于露天矿机器人导航的多模态数据集

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Yuchen Li, Siyu Teng, Junhui Wang, Yunfeng Ai, Bin Tian, Zhe Xuanyuan, Zhenshan Bing, Alois C. Knoll, Fei-Yue Wang, Long Chen
{"title":"AutoMine:用于露天矿机器人导航的多模态数据集","authors":"Yuchen Li,&nbsp;Siyu Teng,&nbsp;Junhui Wang,&nbsp;Yunfeng Ai,&nbsp;Bin Tian,&nbsp;Zhe Xuanyuan,&nbsp;Zhenshan Bing,&nbsp;Alois C. Knoll,&nbsp;Fei-Yue Wang,&nbsp;Long Chen","doi":"10.1002/rob.22469","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the past decade, autonomous driving has witnessed significant advancements, largely attributable to the evolution of precise algorithms and efficient computing platforms. Nevertheless, the open-pit mine, a typical scenario within closed-field environments, has garnered limited attention in autonomous driving, primarily owing to the scarcity of data and experimental benchmarks. This work presents original data collected from five platforms, comprising one passenger vehicle, three wide-body trucks, and one mining truck, across eight different mining sites. We provide a comprehensive elucidation of platform types, sensors, calibration methodologies, synchronization techniques, data collection approaches, and a thorough analysis of the data characteristics. In addition, we offer a detailed benchmark comparison of short and long odometry and navigation performance across multiple vehicles in open-pit mines. With comprehensive data characteristics, experimental performance evaluations, and thorough analysis, we believe that this work establishes a robust research foundation for navigation and fusion methods in open-pit mines, thereby constituting a significant contribution to the autonomous driving and field robotics communities.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 4","pages":"1523-1536"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoMine: A Multimodal Dataset for Robot Navigation in Open-Pit Mines\",\"authors\":\"Yuchen Li,&nbsp;Siyu Teng,&nbsp;Junhui Wang,&nbsp;Yunfeng Ai,&nbsp;Bin Tian,&nbsp;Zhe Xuanyuan,&nbsp;Zhenshan Bing,&nbsp;Alois C. Knoll,&nbsp;Fei-Yue Wang,&nbsp;Long Chen\",\"doi\":\"10.1002/rob.22469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the past decade, autonomous driving has witnessed significant advancements, largely attributable to the evolution of precise algorithms and efficient computing platforms. Nevertheless, the open-pit mine, a typical scenario within closed-field environments, has garnered limited attention in autonomous driving, primarily owing to the scarcity of data and experimental benchmarks. This work presents original data collected from five platforms, comprising one passenger vehicle, three wide-body trucks, and one mining truck, across eight different mining sites. We provide a comprehensive elucidation of platform types, sensors, calibration methodologies, synchronization techniques, data collection approaches, and a thorough analysis of the data characteristics. In addition, we offer a detailed benchmark comparison of short and long odometry and navigation performance across multiple vehicles in open-pit mines. With comprehensive data characteristics, experimental performance evaluations, and thorough analysis, we believe that this work establishes a robust research foundation for navigation and fusion methods in open-pit mines, thereby constituting a significant contribution to the autonomous driving and field robotics communities.</p>\\n </div>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"42 4\",\"pages\":\"1523-1536\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22469\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22469","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,自动驾驶取得了重大进展,这在很大程度上归功于精确算法和高效计算平台的发展。然而,由于缺乏数据和实验基准,露天矿作为封闭环境中的典型场景,在自动驾驶领域受到的关注有限。这项工作展示了从五个平台收集的原始数据,包括一辆乘用车,三辆宽体卡车和一辆采矿卡车,横跨八个不同的矿区。我们提供了平台类型、传感器、校准方法、同步技术、数据收集方法的全面说明,并对数据特征进行了彻底的分析。此外,我们还提供了露天矿中多个车辆的短里程和长里程和导航性能的详细基准比较。通过全面的数据特征、实验性能评估和深入的分析,我们认为这项工作为露天矿导航和融合方法奠定了坚实的研究基础,从而为自动驾驶和现场机器人社区做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutoMine: A Multimodal Dataset for Robot Navigation in Open-Pit Mines

In the past decade, autonomous driving has witnessed significant advancements, largely attributable to the evolution of precise algorithms and efficient computing platforms. Nevertheless, the open-pit mine, a typical scenario within closed-field environments, has garnered limited attention in autonomous driving, primarily owing to the scarcity of data and experimental benchmarks. This work presents original data collected from five platforms, comprising one passenger vehicle, three wide-body trucks, and one mining truck, across eight different mining sites. We provide a comprehensive elucidation of platform types, sensors, calibration methodologies, synchronization techniques, data collection approaches, and a thorough analysis of the data characteristics. In addition, we offer a detailed benchmark comparison of short and long odometry and navigation performance across multiple vehicles in open-pit mines. With comprehensive data characteristics, experimental performance evaluations, and thorough analysis, we believe that this work establishes a robust research foundation for navigation and fusion methods in open-pit mines, thereby constituting a significant contribution to the autonomous driving and field robotics communities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信