基于视觉-惯性融合的移动车辆在具有挑战性的黑暗道路场景中的自主定位

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Yuming Cui, Jiajun Pu, Ningning Hu, Yongbo Guo, Yanxun Zhou, Songyong Liu
{"title":"基于视觉-惯性融合的移动车辆在具有挑战性的黑暗道路场景中的自主定位","authors":"Yuming Cui,&nbsp;Jiajun Pu,&nbsp;Ningning Hu,&nbsp;Yongbo Guo,&nbsp;Yanxun Zhou,&nbsp;Songyong Liu","doi":"10.1002/rob.22454","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate positioning for autonomous driven underground mining vehicles (UMVs) and coal mine robots (CMRs) is indeed one of the cores in the intelligentization of coal mining. Completely different from positioning on the ground and in parking scenes, there will be great difficulties in realizing the accurate active positioning for UMVs shuttled in dark and narrow roadways. We propose an effective visual and inertial fusion positioning method for autonomous CMRs and roadheaders in challenging roadway scenarios based on the odometer-aided inertial navigation system and visual pose estimation system. Velocity information of the odometer is adapted to restrain the error accumulation of inertial positioning based on a Kalman filter. The hybrid visual feature detection algorithm is put forward to improve the accuracy and robustness of visual observation information in a dark environment. Autonomous experiments for CMRs and roadheaders are separately performed in the narrow roadway and dark passageway to demonstrate the applicability of our localization method. The proposed approach outperforms the subsystems and existing methods in accuracy and has outstanding stability.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 4","pages":"1333-1343"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Positioning for Mobile Vehicles Based on Visual-Inertial Fusion in Challenging Dark Roadway Scenes\",\"authors\":\"Yuming Cui,&nbsp;Jiajun Pu,&nbsp;Ningning Hu,&nbsp;Yongbo Guo,&nbsp;Yanxun Zhou,&nbsp;Songyong Liu\",\"doi\":\"10.1002/rob.22454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Accurate positioning for autonomous driven underground mining vehicles (UMVs) and coal mine robots (CMRs) is indeed one of the cores in the intelligentization of coal mining. Completely different from positioning on the ground and in parking scenes, there will be great difficulties in realizing the accurate active positioning for UMVs shuttled in dark and narrow roadways. We propose an effective visual and inertial fusion positioning method for autonomous CMRs and roadheaders in challenging roadway scenarios based on the odometer-aided inertial navigation system and visual pose estimation system. Velocity information of the odometer is adapted to restrain the error accumulation of inertial positioning based on a Kalman filter. The hybrid visual feature detection algorithm is put forward to improve the accuracy and robustness of visual observation information in a dark environment. Autonomous experiments for CMRs and roadheaders are separately performed in the narrow roadway and dark passageway to demonstrate the applicability of our localization method. The proposed approach outperforms the subsystems and existing methods in accuracy and has outstanding stability.</p>\\n </div>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"42 4\",\"pages\":\"1333-1343\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22454\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22454","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶地下采矿车(umv)和煤矿机器人(cmr)的精确定位确实是煤矿智能化的核心之一。与地面和停车场景的定位完全不同,在黑暗狭窄的道路上穿梭的无人驾驶汽车实现准确的主动定位会有很大的困难。本文提出了一种基于里程计辅助惯性导航系统和视觉姿态估计系统的具有挑战性的道路场景下自主cmr和掘进机的有效视觉和惯性融合定位方法。基于卡尔曼滤波,利用里程表的速度信息抑制惯性定位的误差积累。为了提高黑暗环境下视觉观测信息的准确性和鲁棒性,提出了混合视觉特征检测算法。在狭窄巷道和黑暗通道中分别对cmr和掘进机进行了自主实验,验证了该定位方法的适用性。该方法在精度上优于子系统和现有方法,并具有良好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous Positioning for Mobile Vehicles Based on Visual-Inertial Fusion in Challenging Dark Roadway Scenes

Accurate positioning for autonomous driven underground mining vehicles (UMVs) and coal mine robots (CMRs) is indeed one of the cores in the intelligentization of coal mining. Completely different from positioning on the ground and in parking scenes, there will be great difficulties in realizing the accurate active positioning for UMVs shuttled in dark and narrow roadways. We propose an effective visual and inertial fusion positioning method for autonomous CMRs and roadheaders in challenging roadway scenarios based on the odometer-aided inertial navigation system and visual pose estimation system. Velocity information of the odometer is adapted to restrain the error accumulation of inertial positioning based on a Kalman filter. The hybrid visual feature detection algorithm is put forward to improve the accuracy and robustness of visual observation information in a dark environment. Autonomous experiments for CMRs and roadheaders are separately performed in the narrow roadway and dark passageway to demonstrate the applicability of our localization method. The proposed approach outperforms the subsystems and existing methods in accuracy and has outstanding stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信